
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A033 328

AEROELASTIC CHARACTERISTICS OF A

CIRCULATION CONTROL WING

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND

DEVELOPMENT CENTER, BETHESDA, MARYLAND

SEPTEMBER 1976

ii



355061
II

I DAVID W. TAYLOR NAVAL SHIP
RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

AeROELASTIC CHARACTERISTICS OF A

CIRCULATION CONTROL WING

by

Joph B. Wilkerson

4 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLUMITED

D DDC

cc NOV 22I IT

; B

AVIATION AND SURFACE EFFECTS DEPARTMENT

RESEARCH AND DEVELOPMENT REPORT

REPRODUCED BY

opotmwtbu 1976 NATIONAL TECHNICAL Report 76-0116
INFORMATION SERVICE

U, S DEPAPTMEIINT Of COMMERCE
SPRINGFIELD, VA& 22161

L



MAJOR DTNSRDC ORGANIZATI6NAL 4COR'PONENTS

DTNSRDC

COMMANDER
TECHNICAL DIRECTOR

1 O01

OFFICER-IN-CHARGE OFFICER-IN-CHARGE

CARDIEROCK -1m-Imu FICEAINII -CHAmI**II*ANAPOLS
069 04

SYSTEMS
DEVELOPMENT
DEPARTMENT

' VT O1 -I'-- 1•
SHIP PERFORMANCE AVIATION AND

DEPARTMENT SURFACE EFFECTS
15 DEPARTMENT

S COMPUTATION
DEAURES NT AND MATHEMATICS

F 17 DEPARTMENT 18

ISHIP ACOUSTICS 1fPROPULSION AND
DEPARTMENT jJAUXILIARY SYSTEMS1 ~19 JI DEPARTMENT 2?

MATERIALS 1CENTRALI DEPARTMENT INSTRUMENTATIC-N
28 DEPARTMENT 29

DOAC' Ot! S.0it

O •'oE- NDW-DTNSRDiC 39W43b (#Av. I 1-7:

I %wO



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhIen Date Entered)

REPORT DOCUMONTATION PAGE READ ISTRUCTlONS
BEFORE COMPLETING FORM

i. AREPORT NUMBER 2. GOVT ACCESSION NO. 3.RECIPIENT'S CATALOG NUMBER

_ 76-0115

""4. TITLE[ (anldSubtltle) S. TYPE OF REPORT & PFRIOLI CO'VERED

AEROELASTIC CHARACTERISTICS OF A Final

CIRCULATION CONTROL WING January 1974 - July 1973
G. PERFORMING ORG. REPORT NUMBER

ASED Report 12197.- AUTHOR(e) ..... IICONTRACT OR GRANT NUMBEMt(')

Joseph B. Wi]kerson

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

David W. Taylor Naval Ship Research AREA & WORK UNIT NUMSERS

and Development Center (See reverse side)
Bethesda, Maryland 20084

II. CONTROLLING OFpICE NAME AND ADOqESS 12. REPORT DATE

Naval Air Systems Command September 1976
Aerodynamics Technology Administrator (AIR-320) ", NUMBER OF PAGES

Washington, D.C. 20361 136
14. MONITORING AGENCY NAME I ADDRESS(Il different Irom Controlling Office) IS. SECURITY CLASS. (of thl roeco.I)

UNCLASSIFIED
IS. DECL ASSIIrlCATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (o0 this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTIO4 STATEMENT (of the absra.ct enleradin Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

Thesis topic for Master of Science Degree submitted to the Graduate School
of the University of Maryland

I9. KEY WORDS (Continue onl reversee aide It nec~essay and Identify by block number)

Aerodynamics, Aeroelasticity, Two-dimensional airfoi ls, Three-dimensional
wings, Divergence, Reversal, Circulation control -±ng, Stall flutter, Wind
tunnel, Circulation control airfoils, Boundary layer control

ZO. ABSTRACT (Conllnue on raers aide If necessae y and Identify by block n...ber)

Static aeroelasticity is examined for a wing with circulation control

(CC) airfoils. The airfoils use tangential blowing over a rounded trailing
edge to provide a lift augmentation proportional to the jet momentum of the
blown air. Airfoil lift and pitching moment magnitudes are dependent on both
angle of attack and jet.momentum. In combination wii:h an elasti, structure,
this double dependence of lift and moment lead to'a CC reversal condition,

(Continued on reverse side)eJ

DD D 1473 ETO 1O I,, NOVIS615 OBSOLETE
S/N o•0•-014-6601 UNCLASSIFIEDSi SECURITY CI.ASSIFICATION OF THIS PAGE (hetn Date E~nleed)



UNCLASSIFIED

t .- oITY CLAS$IVICATION OF THIS PAGE .Whon D .tr.ntorod)

(Block 10)

Project Element 63203N
Project No. WSL06 (1423)
Work Unit 1-1619-200

(Block 20 continued)

which is analogous to aileron reversal. Increases in jet momentum beyond
the reversal point result in lift decreases. Boundaries for torsional
divergence and CC reversal are theoretically examined for the simple two-
dimensional case and then for a three-dimensional wing. The wing analysis
uses a modified lifting line theory and two-dimensional CC airfoil data to
evaluate the behavior of a circulation control wing (CCW). Two parameters,
lift effectiveness and control effectiveness, define the behavior of an

elastic CCW relative to that of a rigid CCW. A modified version of the wing

analysis is used for comparison to wind tunnel data from a CCW model. The
model had a root attachment device which allowed rigid body wing torsional
deflections in response to the areodynamic pitching moments.

Stall flutter conditions were encountered which involved only the wing

bending mode oscillating at the first cantilevered natural frequency. A
first order explanation of the flutter is provided by two-dimensional con-

siderations. It is shown that the wing stall flutter bcundaries may be
established from the two-dimensioual analysis by proper scaling and by
establishing an aerodynamic equivalence.

The theory was in good agreement with wind tunnel evaluations on a model

CC wing. Because of the large geometric twist in the available model,
portions of the wing were at or near angle-of-attack stall conditions even

though blowing maintained significant levels of lift coefficient. Such con-
ditions are unique to CC airfoils. This caused some difficulty in obtaining
a solution with the lifting line theory which would provide a numerically

stable and convergent iteration. The approach used in conjunction with the
modified lifting line theory and two-dimensional airfoil data is believed to

be the first such analysis, notwithstanding the establishment of divergence
and reversal boundaries.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(WhP SI& .F1 0nI*.d)



.. .......

PREFACE

Application of circulation control (CC) airfoil technology

to both rotary wing and fixed wing aircraft is currently being

pursued by the Department of the Navy and industrial contractors.

Although the advantage of direct high lift control has been well

established for this type of airfoil, relatively large pitching

moments have not been analyzed in terms of their effect on aero-

elastic limits. The purpose of this study is to establish a means

of evaluating safe flight boundaries for a fixed wing application

through analysis of the problems of circulation control torsional

divergence, control reversal, and control effectiveness. A CC

stall flutter condition is also analyzed and is shown to occur

even with the wing in pure bending.

The dependence of airfoil force and moment coefficients on

both angle of attack and blowing rate required modified analyt-

ical procedures. The three-dimensional aiAalysis uses a modi-

fied lifting line theory in matrix formulation which allows non-

linear spanwise aeroelastic variations as well as partial span

CC airfoils. Two-dimensional airfoil characteristics which are

nonlinear with blowing rate required an iterative approach to

establish a reference spanwise distribution of variables. Air-

foil derivatives were then taken at this reference condition.

Divergence and reversal boundaries were established by a linear

analysis along with variations in lift and control effective-

ness with speed.

The author is grateful for the overall guidance provided

by Dr. Jewel Barlow and for his assistance in establishing the

parameters of significance. The author also extends thanks to

Mirý Rose McC-ossin and Miss Vathlpen Henderson for tvping and

assistance in preparing this report.

The wind tunnel evaluation was performed in the DTNSRDC

8- x 10-ft subsonic wind tunnel in January 1974, and the ana-

lytical study was performed over the period April-July 1975.
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Symbol Definition Dimension

in Slot•jet mass flow per unit length slugs per second per feet

Mw Wing total mass flow slugs per second

{m} Normalized distribution of wing jet
momentum
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(= 0.50 - EA/c)
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ABSTRACT

Static aeroelasticity is examined for a wing with circula-
tion control (CC) airfoils. The airfoils use tangential blowing
over a rounded trailing edge to provide a lift augmentation pro-
portional to the jet momentum of the blown air. Airfoil lift and
pitching moment magnitudes are dependent on both angle of attack
and jet momentum. In combination with an elastic structure, this
double dependence of lift and moment can lead to a CC reversal
condition which is analogous to aileron reversal. Increases in
jet momentum beyond the reversal point result in lift decreases.
Boundaries for torsional divergence aud CC reversal are theoreti-
cally examined for the simple two-dimensional case and then for
a three-dimensional wing. The wing analysis uses a modified
lifting line theory and two-dimensional CC airfoil data to evalu-
ate the behavior of a circulation control wing (CCW). Two para-
meters, lift effectiveness and control effectiveness, define the
behavior of an elastic CCW relative to that of a rigid CCW. A
modified version of the wing analysis is used for comparison to
wind tunnel data from a CCW model. The model had a root attach-
ment device which allowed rigid body wing torsional deflections
in response to the aerodynamic pitching moments.

Stall flutter conditions were encountered which involved only
the wing bending mode oscillating at the first cantilevered
natural frequency. A first order explanaticn of the flutter is
provided by two-dimensional considerations. It is shown that
the wing stall flutter boundaries may be established from the
two-dimensional analysis by proper scaling and by establishing
an aerodynamic equivalence.

The theory was in good agreement with wind tunnel evalua-
tions on a model CC wing. Because of the large geometric twist
in the available model, portions of the wing were at or near
angle-of-attack stall conditions even though blowing maintained
significant levels of lift coefficient. Such conditions are
unique to CC airfoils. This caused some difficulty in obtaining
a -;oluton with the lifting line theory which would provide a
numerically &table and convergent iteration. The approach used
in conjunction with the modified lifting line theory and two-
dimensional airfoil data is believed to be the first such
analysis, notwithstanding the establishment of divergence and
reversal boundaries.

ADMINISTRATIVE INFORMATION

The work presented herein was conducted for the Naval Air Systems

Command (AIR-320) under Project Element 63203N and was accomplished in the
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time period January 1974 to July 1975. Preparation of this report was

funded under Work Unit 4-1600-001.

The material was previously submitted to the University of Maryland in

partial fulfillment of requirements for the degree of Master of Science,

Aerospace Engineering. Format of the figures is that of the University of

Maryland.

INTRODUCTION

Circulation control (CC) airfoil technology is currently being pursued

by the David W. Taylor Naval Ship Research and Development Center (DTNSRDC),

Carderock, Maryland, for application to rotary wing and fixed wing air-

craft. The basic advantage of this new technology is that a high lift po-

tential with direct lift control is attainable by controlling the jet

momentum ltsuing from a thin spanwise slot along the rounded trailing edge

of the airfoil. This means of control also produces airfoi. pitching

moments which are on the order of magnitude of flapped high lift airfoils,

and it also offers the potential for operation at moderate to high subsonic

flight speeds. Relatively large pitching moment coefficients at significant

levels of dynamic pressure require that the boundaries of torsional diver- I.

gence be established for safety of flight. Similar boundaries for the con-

dition of CC reversal must also be examined to ensure satisfactory vehicle

control and performance.

BACKGROUND

The CC airfoil is a boundary layer control type of airfoil which em-

ploys a thin slot on the upper trailing-edge surface. Air blown from this

slot remains attached to the airfoil rounded trailing edge by the Coanda

principle and establishes the airfoil stagnation points according to the

combination of angle of attatk and blowing magnitude. Initial experimental

investigations with circulation control by tangential blowing were conducted

on circular cylinders by Dunham. These investigations proved the high

IDunham, J., "Circulation Control Applied to a Circular Cylinder," Nat.
Gas Turbine Est. (England) Report R. 287 (Jul 1967).

2



lift capability of the concept, but the geometry was complicated by multiple

slots and lacked the potential of higher speed operation. Nevertheless, the

results of application studies by Cheeseman2,3 and others showed that the

concept had promise. Subsequent studies at DTNSRDC have concentrated on

quasi-elliptical airfoil shapes employing circular arc camber and modified

trailing edge contours. This series of airfoils has provided both the high

lift capability and the low profile drag characteristics demanded of practi-

cal airfoils. Stone and Englar4 have provided a comprehensive bibliography

of reports on CC airfoils and their applications.

A considerable bank of two-dimensional data has been compiled at

DTNSPROC on the CC airfoil for various gemetry combinations of airfoil thick-

ness ratio, camber, and trailing-edge design. Most of these results are

covered in the aforementioned bibliography.4 Figure . illustrates typical

CC airfoil geometry for two-dimensional models. Some transonic data are

available, but presently there is no information on the unsteady character-

istics of the CC airfoil. Consequently, those problems which require this

type of data, such as classical flutter, cannot be theoretically exemined

with any degree of confidence. The ensuing analysis therefore includes

only steady-Ltate airfoil data and addresses only the divergence, CC re-

versal, lift effectiveness, and stall flutter problems which are amendable

to steady or quasi-steady assumptions.

The characteristics of CC airfoils depend on the two independent vari-

ables of angle of attack a and jet momentum coefficient C . The dependence

,.f !1ft on two independent variables gives a wide range of a and C which

2Chee•sman, I. C. and A. R. Seed, "The Application of Circulation Control
by Blowing to Helicopter Rotors," J.R.Ae.S., Vol. 71, No. 848 (Jul 1966).

3Cheesem&UL, I. C., "Circuldtion Control and Its Application to Stopped
Rotor Aircraft," AIAA Paper 67-747 (Apr 1967).

4Stone, M. B , aitl R. J. Englar, "Circulation Control - A Bibliography
of NSRDC Research and Selected Outside References," NSRDC Report 4108
(Jan 1974).

3



0.961 c

Figure la - 15-Percent Uncambered Ellipse

0.975 c

Figure lb - 20-Percent Ellipse with 5-Percent Camber

0.963 c

Figure ic - 30-Percent Ellipse with 1.5-Percent Camber

Figuie 1 - Typical Circulation Control Airfoil Geometry for
"Two-Dimensional Models
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develop the same lift. Figure 2 is typical of a CC airfoil which shows

both the powerful dependence on C and an unusual angle-of-attack stall

behavior. However, the a, C combination used to develop a given C. greatly

affects the aerodynamic efficiency and the drag and pitching moment co-

efficients. Figure 3 presents typical pitching moment coefficient data re-

solved to the half-chord position. Note that the magnitude and range of

pitching moment coefficient are considerably larger than those of a

conventional airfoil. The fact that the airfoil center of pressure varies

greatly for different combinations of a and C has thwarted attempts to

define a conventional aerodynamic center for CC airfoils. It has therefore

been customary to resolve the pitching moments about the half-chord

position.

The behavior of interest in this report is the increasing magnitude of

negative airfoil pitching moments as jet momentum is increased. At a given

flight speed, jet momentum would be increased to provide increased C Z and

increased lift. However this same control also produces larger magnitudes

of negative pitching moments. In the case of an elastic wing, this would

result in reduced angle of attack, tending to reduce the lift. So there

is a possibility that the reduction in lift due to this decrease in angle

could be more powerful than the increase in lift due to increased jet

momentum. The net effect would be a decrease in lift for an increase in

jet momentum, or an apparent reversal of the circulation control. This

condition is denoted as CC reversal.

The CC reversal condition is somewhat analogous to aileron reversal,

hence the name. As is well known, aileron reversal is defined as that

point where rolling moment becomes zero because of aileron-induced anti-

symmetric lift distribution. This occurs because of wing torsional de-

flections brought about by the aileron-induced pitch moments, and so it is

a reversal of the net effect of the control input. Circulation control is

being considered as a direct means of controlling total wing lift (and

possibly rolling moment also). Therefore, the reversal condition of

interest is not when rolling momILnt goes to zero or even when lift goes

to zero; it is when the rate of change of lift due to blowing goes to

"5



Figure 2 -Typical Lift Coefficient Characteristics of
Two-Dimensional CC Airfoils
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Figure 3 -Typical Pitching Moment Coefficient Characteristics of
Two-Dimensional CC Airfoils
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zero (aL/a@iv = 0). Thus CC reversal is also a reversal of the net

effect of a control input. Basically the phenomenon is produced by the

increasing nose-down pitching moments with increasing lift due to blowing.

The mechani-m is also seen to be similar to aileron reversal.

A limit-cycle stall flutter condition was experienced during wind

tunnel evaluation of a CC model wing. There werf no torsional deflectlins

during this phenomenon, but the wing oscillated at its first cantilevered

bending frequency and at a magnitude proportional to the blowing rate.

Analysis of that condition indicates that it occurred as a result of the

very gradual stall pattern of CC airfoils. The particular family of CC

airfoils on the model wing have pure elliptic leading edges and encounter

angle-of-attack stall at high blowing rates and low positive effective

angles. It must be noted that the family of airfoils preseutly intended

for fixed wing application do not stall until conventional stall angles

are reached. However the model results used herein are sufficient for de-

fining and examining the potential boundaries, and the analb/sis may be

applied by using the appropriate set of two-dimensional airfoil data.

AIRFOIL DATA REPRESENTATION

The nonlinear behavior of CC airfoils with C (and a) has prevented any

meaningful simplified or close-form type of analysis which employs a lin2ar

approximation over the normal range of ct and C . However, the method used

here does utilize a linear representation for analysis of the two-dimensional

wing problems of divergence, CC reversal, and lift effectiveness. The sec-

tion C and C may be approximated over a limited range by

i 5 0

C =C + p C +ac (1)

and

C =C +C C +C a
mi5 0  m° mp n m

12



where p /aC

a -C/a

C - DCi /C

m mi5 0

r C• = ~C /(cL-C-O

C zc C - Cc -0)
0

C -C (ci C W 0))•,m m3

o 50

"This holds only for a limited ca range and for relatively low C but it is',1

consistent with the needs of a two-dimensional analysis whos6 only purpose

is to 3how behavioral trends and to aid in problem definition.

Three-dimensional CC wing divergence, reversal, and effectiveneqs

studies also require a compact representation of section characteristics.

The need for greater accuracy requires that the correct magititudes of ,, 2
and C M 0be represented and that the "local" aerodynamic deriwatt ives, be

used here to reflect differences in behavior at different combinations of

a, C. Application studies have resulted in computer-tcbulated data decks

and standard interpolation and correction compute.r programs whiTh facilitate

handling of the two-dimensional data. The analysis and two-dimensional rep-

resentation which follow have used these data decks and programs where prac-

tical. The interpolation program also corrects the data values for slot

height-to-chord ratios and Reynolds numbers which are slightly different

from the basic tabulated data. This interpolation utilizes three 4et; ot

tabulated airfoil data for different combinations of thickness and camber.

Each set includes two-dimensional CV, C and C as functions of both t

and C. '

For a predetermined reference condition of r and C, 11 . ft'lliwioI

perturbation approach is used herein to define airfoil characteristbi.t at

any given wing section for the three-dimensional analysis:

13



C =C +jAC + aAa

C =C + C AC + C Ac
m m m p m

The values of C and C are the section :haracteristics at the reference
* m

values of a and C The AC and Act are changes in C and a from those
* P

values used in obtaining C£ and C The section derivatives p, a, C
m m

and C are evaluated locally about the reference a , C point. The

change in. C1 , ACm results from an increase in q when solving for the diver-

gence or reversal speed while holding blowing pressure, or fiWV, constant.

Thus AC =C -C

The definition of Act naturally depends on the reference angle. Two

cases will be considered. The first, and more convenient, is applicable to

operation where the lift curve slope is constant. Here the reference con-

dition may be defined as that value of C obtained at the geometric angle.

All calculations for the induced angle i may then be accounted for by a

closed-form solution of the lifting line theory matrix equations. The C

is then expressed as

C £ = C * ( , C * *
C C ) + Pk - C ) + a(f-i) (2)

gjior

or

Cz C + PC + ai -ai

or
C C ai

or 9. £ a±

Here C = C - PC , C= C + PC + at, and • is the deflection angle.
0 0

14
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The second case is applicable to wings which, at least in part, operate at

or near the stall condition where the lift curve slope is not constant. The

previous form is insufficient in the nonlinear range since it can yield in-

correct values for a, if evaluated at the geometric angle, and considerable

error is introduced if the slope is assumed to be constant over the entire

corrected induced angle i. It was found during this study that numerical

instabilities and even multistable conditions that yield erroneous results

may be obtained if one tries to reevaluate a in an iterative manner. How-

ever, the following form provided a stable iterative solution for most of

the cases tried. The reference condition is taken as that of the rigid wing
in order to establish a reference distribution of induced angle. Particu-
lars on how this reference distribution is obtained are given later in con-

nection with the wing root elasticity case. However, once the distribution

is obtained, C• may be represented by small variations about that point as

C, -i , c )+ (c -c ) + a(- Ai) (3)
or

or

C I Ck + PC + aý-aft

or

C C -aAi

where C C (a -i, C )- PC and CZ - CZ + PCP + aý. The same
0 0

notation and procedure are applied to the pitching moment coefficient.

Stall flutter analysis depends heavily on the airfoil nonlinear be-

havior with angle of attack. The above linearized approaches are therefore

useless in such calcuiations. Appropriate representations of airfoil char- 4-

acteristics are described in the relevant sectiony. j 2

TWO-DIMENSIONAL STATIC AEROELASTICITY '

The two-dimensional case is considered here for purpose3 of establishing

the primary relrcionship which governs torsional divergence, CC reversal,



V d

and lift and control effectiveness. Consider a section of a CC wing acting

in a two-dimensional flow. As shown in Figure 4, the section is torsionally

TORSIONAL SPRING

a v
ELASTIC AXIS

CC JET
MIDCHORD

Figure 4 - Two-Dimensional Representation of Aeroelastic Wing

restrained by means of a spring mount about a position which establishes the

elastic axis. The position of the elastic axis from the airfoil leading

edge will be denoted by EA.

Available CC two-dimensional data have been resolved about the airfoil

midchord; this, then, will be the reference point for aerodynamic forces

and moments. The lift and moment about the FA are then given by:

L - qSC

0 qSc(CE50

where E - 0.50 - EA/c - elastic axis position relative to midchord,
positive forward

= torsional deflection

K * torsional spring constant

16



Lift and moment coefficients are described by Equation (1); there the angle

of attack is the geometric incidence plus torsional deflection about the EA,

or = (x + •. Substitution into the moment equation gives the deflection
g

angle

m5 0  . 5 0

S-(Cm - Ea) (4)
cx

where

C =C +C C +C
i m0  m 11 m g

50 o

C C + pC + aa
9P 9.

Y= (CM -ca)

= K/qSc

Equations (1) and (4) can then be substituted into the lift equation to

yield

L qS (C£ + aO)

or

L =qS [(C9  + aa•) (i a) yCo~ g -Y co+co S

+ i( A-) + Cm 1ivj (5)

TORSIONAL DIVERGENCE

It is readily apparent from Equation (4) that torsional divergence will

occur when y - 0, or at that point when the dimensionless stiffness (K/qSc)

just balances the natural aerodynamic tendency in pitch. Therefore the

critical value of dimensionless stiffness is given by

17



D K q (C ca)
a

For a predesigned torsional stiffness, the divergence q is given by

q(CK -K a) (6)

The divergence equation indicates no dependence on initial settings of angle

of attack or blowing. The obvious point is that a conventional wing of sym-

metrical section properties will theoretically diverge in a negative direc-

tion as readily as it will diverge ila the positive direction. A cambered

conventional section will behave similarly but relative to its zero lift

angle. The lift curve slope must then be evaluated for differences in

behavior at positive or negative lifts. If the CC airfoil is viewed as a

variable camber section, where camber is dependent on blowing rate, it is

seen that the airfoil derivatives C and a are themselves dependent bothm
Ma

on angle of attack and on blowing rate and therefore that both affect the

value of qD"

A special case occurs for (CM - ca)<O, or e>Cm /a, for here the de-

nominator of Equation (4) remains positive even for zero SLiffness. Con-

sequently a torsional divergence does not exist. Physically, C /a denotes
ma

the instantaneous moment center due to angle of attack. Thus O>C /a is a-- ma

condition which requires that EA be placed sufficieutly forward to ensure
that 9C /a is negative. This always produces aerodynamic restoring

'SEA
moments and therefore ensures a stable condition.

The dimensionless divergence stiffness CD may be plotted for various

operating conditions of a, C in order to define the tradeoff between re-

quired stiffness and EA position. The graph shown in Figure 5 uses
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Figure 5 - Effect of Elastic Axis Position on Two-Dimensional
Divergence Stiffness

two-dimensional data of a 15-percent thickness uncambered elliptical airfoil

with a modified rounded trailing edge. Note that the separate lines are due

to variations in the airfoil derivatives as obtained from two-dimensjonal

data; in contrast, the assumed linearity of Equation (1) would provide only

one line for a given airfoil.. Values of ý above the divergence lines cor-

respond to y>O in Equation (4) and so are not divergent. As q is increased,

the value of ý decreases and approaches the divergence value D from above.

Note that a "substiff" design point 4<4D also appears feasible from the

graph. However regardless of the stiffness, r - at q - 0 and so the di-

vergence condition would have to be passed through before the substiff

design point is reached-an obvious impossibility.
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In general the trend of Figure 5 is typical in that it shows lower

stiffness requirements, or higher values of qDo for more forward positions

of the elastic axis. Also the curves indicate that an EA position of around

0.25c would minimize the problem of torsional divergence.

CIRCULATION CONTROL REVERSAL

As mentioned in the introduction, the CC reversal condition is defined

as that value of q at which there is no change in lift for a change in the

blowing control input, or

S3L _
- -o0

Applying this condition to Equation (5) yields

P _+a (Cm_ ) 0

YR m~
S+R

In terms of the dimensionless stiffness and reversal q, the above equation

becomes

K aC (7)
R qSc

or

K

Sc -- C )
Ima mP

The reversal stiffness •R is seen to be independent of the EA position;
IR

this is in contrast to the dependence of divergence speed on this parameter.

However divergence was defined as a condition of the total lift whereas re-

versal is a condition of only that lift due to blowing.

L 20
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At this point it is appropriate to also consider the deflection angle

"at the reversal condition. Combining Equations (7) and (4) yields the

following:

C - c

OR i 5 0

where

YR - (Cm - ea)

R -D

The region of interest is for those conditions when the reversal speed is

less than the divergence speed (or CR > CD' or yR > 0). Thus the sign of

OR is determined by the numerator, which simply represents an equivalent

moment coefficient resolved about the elastic axis C - C - .
"mEA l5so P

Figure 6 presents two-dimensional data which have been resolved about three

chord positions that represent three EA positions. As shown, the forward

EA position provides negative moments almost exclusively, indicating *R < 0.

The different behavior for the aft position indicates that the sign and

magnitude of *R are heavily dependent on the geometric angle of attack.

Evaluation of 0R by using the linear relations of Equation (1) gives

the expanded expression

(Cm - EC) + (CmI - ca)a + (Cm -C1)C1

OR 0-- (Cm - C0) (Wa0)

The typical variations shown in Figure 7 support the conclusions

reached above. More specifically, (1) EA position has considerable impact

on the deflection magnitude and sign at reversal conditions evein though it

21



Figure 6 - Pitching Moment Coefficient Resolved to Different Chord Locations
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Figure 6a - Resolution to 40-Percent Chord
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does not directly affect reversal speed and (2) slightly forward EA positions

are desirable because of reduced sensitivity to angle of attack. As shown

in Figure 7, R is independent of E at a -0. Setting Cm - CR = a 0

in the above equation gives o 0

1R--1aC (C -C C g = 0)R a "1 m 0 0

This corresponds to a zero net lift since a = 0 and the reversal conditiong
is defined as zero net lift due to blowing (for the linear analysis).

Another point of interest is the variation in deflection angle as it

approaches *R" The following inequality may be stated for q approaching

qR which is less than qD

S> Ra > rýD

Then by using Equdtions (4) and (6) and the above inequality,

R D

First of all, this states that 0 does not change sign as q -0 qR Since the

above ratio is always positive, the sign of 0 must remain at its initial

plus or minus value. Therefore those regions in Figure 7 which show *R > 0

must correspond to inital 0 > 0 values also, and vice versa. Second, the

above equation states that 0 approaches *R as an inverse function of q

such that the values of Figure 7 also represent maxima (or minima) values

up to qR"

To return to Equation (7), the reversal stiffness (or reversal q) does

not depend either on a or on C in this linear analysis. Thus the various

25



-,• - ,!,, , .•' 44- ,, .- ,. -• LV ' • . . ., # J 1 '•f~ Y -,' '" • -¶ T-: ,•' ••• ,r" •' :

combinations of Figure 7 all correspond to a single reversal stiffness.

However both the nonlinear behavior of pitching moment indicated in Figure

6b and that of lift coefficient derivatives shown previously suggest that

tR does, in fact, depend on both a and C The curves of Figure 8 were

0-0
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zU.
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U -
1.0

U,LU
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"C 0.5

0 0.02 0.04 006 0.08 0.10

JET MOMENTUM COEFFICIENT. C.

Figure 8 - Effect of Local Airfoil Derivatives on Two-Dimensional
Reversal Stiffness

obtained by taking the local airfoil derivatives from two-dimensional data

and applying Equation (7) to each point. Although this approach shows

definite variations, it still allows for a conservative and yet representa-

tive choice of derivatives which may be used in the linear analysis to

bracket the reversal speed. On the other hand, it indicates that if local
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derivatives from two-dimensional data are to be used, they must be careful-

ly selected in order to provide conservative results over a broad operating

range.

LIFT AND CONTROL EFFECTIVENESS

It should be noted that because of other terms in Equation (5), the

change in wing lift may be different than expected by the defined CC re-

versal condition. For instance, the teversal condition may not be reached

and yet the lift may have diverged. Comparisons of both lift and control

effectiveness axe therefore required to establish the overall wing behavior.

Treating these in reverse order, CC control effectiveness (C.E.) is analo-

gous to aileron effectiveness. It is a measure of wing lift response to

a change in the control Input of jet momentum. Herein it is normalized rel-

ative to the control effectiveneRs of an idealized rigid wing response.

The variation of C.E. with jet momentum and with q provides a direct measure

of the available coutrol. The definition of C.E., shown later, is such

that C.E. - 0 at the point of CC reversal. This is also analogous to the

definition of aileron effectiveness which goes to zero at the point of

aileron reversal.

Since aileron control contributes only an antisyrnetric lift distribu-

tion, it does not contribute to the net wing lift. However the circulation

control contributes a symmetric lift dis,ribution when used as a direct lift

control, and so it affects the net wing lift. Hence there is also a need

to define a lift effectiveness parameter L.E. This is a measure of the

elastic wings net lift relative to the lift which would be available from

an idealized rigid wing. Thus the two parameters L.E. and C.E. respectively

measure the net lift and the available control power of the elastic wing

relative to these characteristics of an idealized rigid wing.

Lift effectiveness is the ratio of elastic wing lift, from Equation

(5), to the lift of a rigid wing. The rigid wing lift is also obtained from

Equation (5) by setting y - which is the zero deflection case. Lift

effectiveness as a function of q for constant blowing is then

27



g p . •• ,. .. • . !•• '2 • •.. -) + -• Thy: • - . .

qS L(Co aactg) (1 + ,Cm +Cm Ctg) + [(1 - + Cmyj j

L.E. - qS(C, + aag) + lPIVj

qS(C + C g) + CmiV
SL.E. + M 0 m. g+ a (8)

qS(C£ + aa) +A0 0

where y is also a function of q as previously defined. Obviously Equation

(8) retains the sime qualities of divergence and CC reversal that have been

examined for Equation (5). However, it is complicated by singularities

when the rigid wing lift in the denominator goes to zero. Although this is

possible for almost any a < 0 with blowing, it is not an operational condi-g
tion of Interest and so does not limit the usefulness of the parameter as

defined. The lift effectiveness at reversal is also of interest. Substi-

tuting Equation (7) and the definition of y into Equation (8) results in

qS(C + C ag) + C tV 1F M mg m 30 I a P I
REV C-C IA qS(C k +- aot)+k hVj

Control effectiveness is defined as the elastic wing lift response to

a control input, normalized by the idealized rigid wing response or

CL/3 W VW of flexible wing

3L/athV of rigid wing

This definition corresponds to C.E. - 0 at CC reversal. Evaluating the

above parameter by using Equation (5) yields

28I
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C.E. 1 + - (9)

Further substitution of Equations (6) and (7) into (9) gives the more com-

pact form

1-q/qR

C.E. - (10)

In the latter form, it is obvious that C.E. - 0 as q q R and that C.E. is

undefined at the divergence singularity. This presents no real problem since

at a divergence condition, C.E. is rather meaningless anyway.

Lift and control effectiveness parameters become identical in the

special case of C C a - 0 and take the form of Equation (9).
m go 0

Typical variations with speed for this case are shown in Figure 9 for dif-

ferent EA offsets e. These curves are generated for fixed controls or blow-

ing rate (uiV). Thus the magnitude of blowing coefficient C decreases with

increasing q. The more forward EA positions are seen to produce reduced

values of both lfft and control effectiveness. In contrast, negative EA

offset produces augmented lift and control effectiveness but at the same

time it results in a lower divergence q as was shown in Figure 5.

Reversal speed and C.E. are shown to be independent of a by Equations
g

(7) and (9). Therefore Figure 9 represents C.E. for any value of ag, but

it represents L.E. only fur a - 0. The reversal stiffness is also shown tog

be independent of e by Equation (7); this is reflected in Figure 9 by the

coalesence of curves at zero effectiveness. Lift effectivenesaa variation

with speed is shown in Figure 10 for a - + 3 deg, again for conditions ofg -

constant blowing rate. The strong effect of angle of attack on pirching

moments is very evidert here, reflecting the relation of Equation (8).

The previous graphs have shown the variations of L.;L. with speed for

constant reference values of stiffness K and blowing rate 6VJ, Figure 12
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evaluates the variation of L.E. with sciffness at constant q fox different

values of EA offset at at - 0. Dashed lines show the stiffness magnitude

relative to divergence and reversal stiffness. It appears from this plot

that design stiffness on the order of 4C R would be sufficient to provide

safe operation and avoid excessive structural deflection. Figure 12 pre-

sents the variation of L.E. with C at constant q for two EA positions.

Note that the effects of angle of attack quickly diminish as C Pincreases,

approaching the L.E. value at a~ - 0 deg.
g

Some understanding is attainable from the simplified preceding equa-

tions, but their application is limited to cruds first order approximations

of divergence and reversal. Spanwise variations in elastic bending and air-

foil characteristics, as well as three-dimensional wing effects, are, of

course, absent from the simple analysis. In fairness, the analysis may

apply quite well to cases where three-dimensional wing aerodynamic deriva-I tives are available, especially when only a root end restraint is to be

considered (as will be done later). Nevertheless a more precise analysis

is required if two-dimensional airfoil characteristics are to be generally

applied to a wing.

THREE-DIMENSIONAL STATIC AEROELASTICITY

This section is concerned with spanwise variations in airfoils and
torsional stiffness variations in wings. Aerodynamic theory utilizes the

lifting line approach to calculate local induced angles which are dependent

on the vaig lift distributioo. The equations are expressed in standard

matrix form for both lift and pitching moment coefficients.

The wing-induced angle distribution i may be related to local values

of a nondimensional circulation parameter T by a geometrically defined

matrix N. This basic relationship is explained in some detail on pagesI 5
303-307 of Scanlon and Rosenbaum. Local lift is a function of both the

nondimetsional circulation and the characteristics of the local two-

dimensional airfoil. Combining these relations then provides a matrix

SScanlon, R. H. and R. Rosenbaum, "Introduction to the Study of Aircraft
Vibration and Flutter," MacMillan, New York, (1951).

33



1.41

e-0.10

1.2

z

20.8
IL
U.
ILl

U . -

0.4 CONSTANT

0.4 DYNAMIC PRESSURE

1.4

a +3I1.20ý
wzLU

p0.8

U. -

CONSTANT
DYNAMIC PRESSURE

Figr: 12 Efec of Jet l MoetmonToDmesoa LiftEfetvns



expression for the distributed wing lift. The induced angle distribution is

given by

{i} l N{T} (11)

and the lift per unit span is related to the section circulation by

L' pVr

or

L' 2tqr (12)

where T r/MV. The lift per unit span is also related to local airfoil

properties by

L' - qcC• (13)

A comparison of Equations (12) and (13) then establishes the relation

between T and the local airfoil lift coefficient as

cC2
T- 2 (14)

Section lift is given simply by L - AyL'. The set of equations to be solved

is then:

{L} - qr2ZAyj {T) (15a)

{T(ri -X (15b)

{i} = N{r} (15c)
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The dependence of C£ on i provides the final relationship. The form

of this relationship also determines the solution form for the equations.

In the following, Equations (15) will be solved by using relations in

Equation (2) for the case of distributed elasticity and those in

Equation (3) for the case of wing root elasticity.

DISTRIBUTED ELASTICITY

This section provides an analysis of a wing having distributed tor-

sional elasticity and resulting distributed torsional deflection. Airfoil

characteristics will be represented by Equation (2) and are therefore

assumed to be linear with angle of attack. Combining the last of Equation

(2) with Equations (15b) and (15c) gives the following expression for the T

distribution:

{T} [I+[jca]N]-l {4
Substitution into Equation (15a) then gives the lift distribution:

{L} = q(Oz) •-z (16)

where ([s) - r2£Ay+ + + N -1 The distributed elastic twist is

related to aerodynamic moments by the matrix of structural influence co-

efficients

{cO} , O{M} (17)

Aerodynamic moments are expressed as follows where the moment coefficient

has the same form as Equation (2):

{M) q[Ayc2] {C -C
m50
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or

{}-q[Ayc] Cm q [Awc2C J {il q r~yc 2e fci[ (18)

The following relations are available from Equationa (15):

2
q r:Ayc e2I {C2,1 - tcci {L}

{i} N
q 2R1Ay

which may be used to express the moment in terms of lift.

{M} q Ayc 2 - [s L (19)

m 5 0

where [s] -Ayc
2 CC j N - ]+ [cc] and -C + Cm C C-C + C

ma 2kAy mi50  mo m 1i

The distributed elastic twist is obtained by substituting Equations

(16) and (19) into Equation (17). Coefficients C k and C are expanded,m50
and the resulting matrix equation is solved for the 0 distribution to give

q Q-1 6 rAyc2j 'Cm + Cm C}

-qq 0 [s yC + PC (20)

where Q I - q 2rAyc (2s) {+}.

The need to describe the moment coefficient in terms of both a and C

is unique to the family of blown airfoils and to CC airfoils in particular.
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This requirement causes the above equation for elastic deflection to be more

complex than its equivalent for a wing of conventional airfoils. Moment

coefficient dependence on induced angle caused the more complex [s] term

of Equation (19), and dependence on the elastic twist required the C term
cm

in the Q matrix. Although it is correct, the Q matrix is an undesirable

feature of the anlysis since it contains q, and so Q prohibits an algebraic

factoring of all q terms in the final lift equation.

* Lift distribution on the wing may now be obtained by expanding C• in

Equation (16) and substituting Equation (20) for the elastic twist. The jet

momentum coefficient C is expressed directly as iV since this is a

quantity over which a pilot would have direct control. A fixed control type

of analysis then maintains constant hV ; as a result, C• changes inversely

with q. The wing lift distribution is then

+ q (Qs) 0o} - (ty) [ {+Qvj

2 Qal OýAycJ {C I

+ q (Q c - 6yc m J{h

+ q 2 ) [iý] Q-1 O[s (2A0

Torsional Divergence

It is apparent from Equation (20) that Q must exist in order for {€}

to be finite. The same observation may be made for the lift from Equation
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(21). Therefore the divergence q is established by requiring that Q be

singular, or det Q - 0. Note that Q_- Q - I for q - 0 and that the lift

reduces to

This is obviously not a valid condition since it corresponds to C, , and

the aerodynamics involved are not representative. However it implies that

the trivial solution of q 0 is eliminated in the above process since it

does not result in det Q 0. Therefore the desired solution is the lowest

positive q which satisfies the criteria. The process also eliminates the

need to evaluate the right-hand side of Equation (21) for calculations of

divergence speed. It is practical because of the speed and accessibility

of modern digital computers.

Basically it is seen that Q, and thus q depend on the parameters a,

Cm , c, Z, and e (stiffness matrix). These are the same parameters which

govern the two-dimensional divergence, given by Equation (6), but they bear

the more complex relations imposed by aerodynamic and elastic spanwise

interactions.

Circulation Control Reversal and Effectiveness

As with the two-dimensional case, CC reversal is defined as the point

where wing lift does not change with blowing. However, spanwise variations

of L and iV require a slightly different mathematical definition. Let the

total wing lift be

L E [lJ {t)

Lw{}

and define the distribution of Jet momentum as

{vW 1 hv) {m)}
j Jr
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where *V )r is the jet momentum at some wing reference station and {m} is

then a dimensionless distribution of jet momentum normalized by the reference

value. The reversal condition is then defined in scalar terms as

I!L

, •iv ) r0
jr

This condition may be evaluated from Equation (21) where the scalar quantity

&hV )r may be taken across the matrix products:

jr

aL w 
a- 

lJ (Q {m} + q 1 Q [c] Q 1 0 [AcC,] {m}

Ll ( -21 I~ Q_0 [s] () 2ZI{m

From this form, the reversal speed is

1 (.s) Ij-] {m}
q s (:Z) f m (22)

Ij (S2 Q [rAycC,,J - (s] (0,) fl m

The solution given by Equation (22) is direct in the sense that Q-I is

a direct calculation which is readily attainable from several computer

techniques. However it is iterative since Q itself is dependent on q.

Hence it must be reevaluated by using the initially calculated q which

then yields a new qR from Equation (22). This is then a recursive-type

formula, but it does not require the change in form which is necessary with

some techniques for successive iterations.5,6 For this reason, it is be-

lieved to be a more direct solution procedure for computer programming.

6 Bisplinghoff, R. L. et al., "Aeroelasticity," Addison-Wesley,
Massachusetts (1957).
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Once the reversal q is obtained, Equation (21) may be used directly to cal-

culate the lift distribution ard, if desired, the total wing lift since Q

is then available at q

As with the two-dimensional case, the equation for q does not appear
to deperd on the magnitude of blowing iV ) or on any other initial condi-

i r
tions of angle of attack or camber. However these values do affect the

local airfoil derivatives contained in Equation (22) and therefore do have

an effect on qR" Also like the two-dimensional case, Equation (18) shows

that the aerodynamic moment and therefore the deflection angle are affected

by the EA offset.

Lift effectiveness is again defined as elastic wing lift relative to

rigid wing lift as discussed earlier. Elastic wing lift is the st.uation

of distributed lift from Equation (21). Rigid wing lift is the same minus

those terms due to elastic deflection. The lift effectiveness is then

obtained from their ratio:

Elastic Wing: Lw (E) - lIJ {L}Equation (21)

Rigid Wing: L (R) - q [LJ (W 0) + J( 2) I { v}V? 8 2Z ~ s L22 P

L (E)

Lift Effectiveness: L.E. w (23)
L w(R)w

No simplification is possible for the general case, but the indicated calcu-

lations are direct when L.E. is generated versus q.

Circulation control effectiveness is defined as the sensitivity of the

elastic wing lift to jet momentuLi relative to the sensitivity of the rigid

wing lift to jet momentum, or

DL /UnV ) (elastic wing)
C.E. 5 wLi~ v )r (rigid wing) (24)

-w 4
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*~' (Q.=~ ~)L~ m + q Ll ( 2Z Q-le [rAycc mJ - [s] (Q~ L~Jm}C. E.
LlJ (Q M1

(25)

It is seen from Equations (22) and (25) that these parameters have been con-

sistently defined such that circulation control effectiveness is zero at the

reversal speed. Neither L.E. nor C.E. is defined at the divergence speed

since Q is singlular at that point but, as previously discussed, there is no

need for their evaluation in this instance.

The relations presented in this section provide analytical ability for

the general case of a circalation control wing. Matrix expressions have

contained such terms as chord, EA offset, and lift and moment derivatives

with respect to a and C . Thus the analysis is applicable to the general

case where chord and EA offset vary with span and where airfoil characteris-

tics vary with span (including partial-span CC airfoils). The airfoil

representation has assumed angle-of-attack linearity for variations about

the geometric angle and has assumed C linearity for variations about an

azbitrary reference C . Although this analysis has been oriented to specific

static aeroelastic problems, the basic lift equations may certainly be ap-

plied to performance-oriented design goals as well.

Now consider a special. case of the preceding analysis, one that allows

for elastic deflection at the wing root only. However it includes an

iteration procedure for obtaining the rigid-wing-induced angle distribution

which eliminates an angle-of-attack linearity assumption for the rigid wing.

The procedure was found necessary for the analysis of wings which while

operating under partial angle-of-attack stall conditions still develop sig-

nificant lift coefficients due to blowing.

WING ROOT ELASTICITY

The following analysis retains tha previous lifting line theory ad is

for a taree-dimensional wing with varying aerodynamic properties. However

elastic properties allow for torsional softness only at the wing root. Thus
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the deflection mode is one of a rigid body where all spanwise stations ex-

perience equal torsional deflections and all contribute equally to the pitch-

ing moment which causes that deflection.

This special case is considered for theoretical comparison to model

data from just such a device. A blade from a CC rotor mi-del wqs experivetz-

tally evaluated as a fixed wing, both with and without coot torsional flexi-

bility. The natural torsional stiffness of the blade was much too high to

allow torsional deflections for the q range available in the DTNSRDC 8- x

10-ft subsonic wind tunnel. Accordingly, apecial root end fixture was

designed and used to provide the blade with a rigid mode torsional respon.e

to its own aerodynamic moments. Experimental results from the model will

be presented later along aith an aniaiytical comparison.

As previously described, the model blpde geometry included considerable

built-in twist or washout. When tested as a fixed wing, this led to an in-

board angle-of-attack stall condition even though significant !ift coeffi-

cients were maintained by CC bJowing. The combination of negative lift

curve slopes ane operation in a nonlinear a range required an iterativ.ý solu-
tion to obtain induced angles. Airfoij- characteristics for this analysis

are represented by Equation (3), where the reference condition is th-

iterated solution for the rigid wing including induced angle distribution.

Local airfoil derivatives are taken at this reference condition, and a

liuear analysis is used to establish the boundaries of torsional divergence

and CC reversal. A byproduct of this approach is the solutioa to tre rigJ

wing lift distribution without any restricting assum)tIons of airfoil

linearity.

Consider first only the rigid wing; the problem is to converge on its

induced angle distribution. Combining Eouation (3) with Equations (15b) andIi
(15c) gives the following expression for Ai:

(Ai} = P-1 N F- jJ - Pi{i} (26)

where P I + N Here Ai represents the difference between the
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inltial (or previou&u) induced angle and the induced angle for the next itera-

tion. Obviously the solution criterion is for Ai - 0, where the terms on

the right-hand side are in balance. At each step in the iteration., time pre-

vious angle distributtion is adjusted by IA and is then used to reevaluate

the effective angle-of--attack distribution and the corresponding C, distribu--

tion. Local valuas of the lift curve siope are also reevaluated. Thin

gives adcktitonal equ~ations to be used in conjunction with Equation (26) for

describing the iteration procedure:

{i} -{iJ + {Ai}

{C1 {C2IctC

[ (fa} {ajc~,C~

Convergenice to {IA0 0 yields the induced angle, lift cioefficient, effec-

tiva ang!.e, and lift curve slope distributions of the rigid wing. These

become the reference distributions which are denoted as { *for the re-

maining analysis. At this point, the -A:gid wing lift is giqren by

[L qr22.Ayj 12t-

or

1L0 - qtAyc C 1(27)

The elastic wing has the additional variation of torsional defl-action

which, in turn, changes the )ift distributio~n ind the induced angle distribu-

tion f~rom thosie of the rigid w~ing. Thnse are assumed to be rý_,atively
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small variations from the rigid wing and are approximated by linear rela-
tions. The induced angle distribution of the elastic wing may be related

to that of the rigid wing by using Equation (15c):

! {il* + i6i• - N{Tl

or

{Ail = N{T} - {ti* (28)

Applying Equation (3) to Equation (15b) gives the following expression for

dimensionless circuli•tion:

{] {Co + + [c] m- a (29)

Combining Equations (28) and (29) gives the elastic wing circulation

(C~ ~ Fca~ -1R I-FId~+ ca, il* (30)

L2 I X0  L2 ~L.2ZJ

where R I +Lz N.

Substitution of Equation (30) into Equation (15a) then provides the

lift distribution of the elastic wing in. terms of the deflection angle • as

[L) = q( o ( + q [ i

+ q(s) •,Z { (31)

where (s) - [2AyJ R-I
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The deflection angle * must be expressed ia terms of other variables in

order to reduce Equation (31) to a usable form. For the case of root elas-

ticity only, the distribution of * is constant with a magnitude 0, de-

termined by the sum of the outboard wing moments:

{ Cif

The moment balance is then

K4 L- J 1m} (32)

where the aerodynamic moments about the EA are expressed as follows:

{W} - q[Ayc 2 J {Cm 50 - 9"

M) = 4rAyc 2 j +C C C + + q C + yC2 C j 2 1}{M} Ij mac~ {

- qrAyc 2Cm j {Ail - rcsj {LI

ca

But {Ai} -N{T} - {i* from Equation (28) and {TI {L} from
q

Equation (15a); thus

tA~il } N -I{L} - {il
q 2LiAy]

The moment equation ii terms of lift is then:

{MI - qrAyc2 {Cm 4 Cm C } + qltAyC2 C M
0 1

+ qrAyc 2 Cm j ii*- [s] {LI (33)

where [s] tAyc 2 CI N U -1 + rcE].
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A solution for the deflection magnitude 0 is obtained by substituting

the lift distribution, Equation (31), into the moment distribution, Equa-

tion (33). This is then applied to Equation (32) w:hich is solved for P;

the result is shown by Equation (34):

K-Xq K-Xq (LJis{W + -qKX(W I]M

The lift distribution of the elastic wing is now obtained by direct

substitution of the rigid body deflection angle D into Equation (31). After

gathering terms, this gives the lift distribution to be

{0 =q{W + iiV) {U} + q- A{V} 1 s- ~j[i{}~ v
j r K-Aq K-Xq W, Is /) V

+ - qShv) B{V} -tiiV.) (Lq] [sI {uI ) {v} (35)
K-Xq *jr K-Xq r/

where {W} tj [y ] {C + ai*}I

{U} (f22) 2.{m}

2*A -lW tAyc j {C m+ C mi
0 Ot

B1-1Lj tAYcC j {m}

[s] - rAyc 2C .] N [L]+ rce&m yCX~m

X -lJ tAyc2 1C M {1l --. J Is] fv}.
a

Note that the matrix factors in parentheses in Equations (34) and (35) and

the defined terms A, B, and X are all scalar quantities.
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Torsional Divergence

It is clearly seen from Equation (34) that the deflection angle is

divergent as K-Aq approaches zero. Equation (35), which describes lift, is

seen to diverge at this condition also. The divergence speed is then given

by

D- K/A (36)

where qD is seen to depend on stiffness K and the distributions of C , a,

£, and c. These relations are more easily seen when the terms of A are ex-

panded and regrouped as

X - [1] [Ayc 2 CI ] + N J] {-l - [lJ rc~j Y [) 1 {lP

Circulation Control Reversal and Effectiveness

The definitions of circulation control reversal and of lift and control

effectiveness used here are identical to those previously defined for the

general case of distributed elasticity. Taking aLw /aiV )r from Equation

(35) yields

S•DL
K--A qU}+ q (B - [l] [a] {U}) [lJ {V} (37)

Reversal speed corresponds to that value of q at which the above partial

derivative goes to zero or

K
XR =X- (B- j ljs {u)) _L:I---(

Both reversal speed and divergence speed for this case (Equations (38) and

(36), respectively) are seen to be less complex than their counterparts for
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the case of distributed elasticity and yet more complex than those for the

two-dimensional case. This simply reflects the relative complexity of the

wing root elasticity probLem with respect to those otler two cases.

It is certainly advantageous, if not common practice, to design to the

condition of qD > qRO or qD/qR > 1. This relation is obtained by combining

Equations (36) and (38), and it may be used directly in lieu of individual

calculations for qD and qR'

S= 1- (B- [lJ [s] {U})

The factors X, {V}, and {M} are normally positive. Thus in order for the

above equation to satisfy the previous inequality (qD/qR >

B - LlJ [s] {u} must be less than zero. But B is normally negative (be-

cause C is negative) and because it is dependent on airfoil characteris-
m

tics, it is not readily changed. The design parameter which may be varied

is seen to be the elastic axis offset E that occurs in the matrix [s].

Examination then shows that to increase the ratio qD/qR should be in-

creasing positively (forward). Basically it is seen [from Equation (36)]

that an increase in C decreases A and thus increases qD' The effect on qR

is less obvious and involves canceling effects in the denominator of Equa-

tion (38). This at least indicates a smaller change in q accounting for

the increased qD/qR ratio. The reduced effect of E on qR is not surprising

since the previous simplified two-dimensional analysis had predicted no

effect at all.

Lift effectiveness was defined by Equation (23). Applying Equation

(35), and the notation used there to the definition of L.E. gives

Lw(E) - [!j {L} Equation (35)

Lw (R) q [1] {W} + IVj)r I1] fU}

L w(E)
L.E. z (I L (R)
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So then

E (q(A- LJ Lsl{w})+ t 1Vj)r (B -U} fJ ) {V}
L.. +K-Xq \q Cl jf W T+1Ir &V NJUIJ

This value of lift effectiveness at the reversal speed is of interest siice

this establishes relative importance. If thn- reversal speed is determined

to be marginally satisfactory (does not yield broad safety margins) then it

may be important to maintain high lift effectiveness at the reversal bound-

ary. This would be a quantitative consideration beyond the normal procedure

of designing q > qR > qmax Evaluating L.E. at q gives

q R LJ {w} - A R LIJ [s] 11W/LIJ 10
REV q LJ {WI + mhy)r LlJ {uM

Circulation control effectiveness was defined by Equation (24). As

previously discussed, it is a measure of elastic wing lift response to a

change in the input control of jet momentum. It differs from lift effective-

ness in that the latter is elastic wing total lift at a fixed control set-

ting. Applying Equation (37) to the definition gives:

LlJ {ul + K (B - LlJ [si U) LlJ {v
C.E. = lJ {U}

Substitution of the equations for q and q provide the following simplified

farm:

G.E. = 1 - D (39)

First of all, it is noteworthy that this is tbe same relation obtained for

the two-dimensional case despite the fact that the definitiotns of q and qD
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are quite different. Second, Equation (39) shows again that C.E. goes to

zero as q approaches qR" Finally and most significant, Equation (39)

establishes the importance of the concept of circulation control reversal

as defined herein. Specifically the values of q and q not only aid in

defining boundaries of the flight envelope but they alone can describe the

effectiveness of circulation control over the entire flight envelope.

Trim and Stability

The equations developed above for wing root elasticity may also be

readily applied to such problems as aircraft trim and stability. This

subject is beyond the scope of the present report, but it would be neglect-

ful not to mention such alternative uses. The following brief treatment

is intended merely to show the new interpretation of terms and their

application.

Very simply, the equations for wing root elasticity may be thought of

as applying to the aircraft itself where (1) the spring restoring moment

stems from the horizontal tail surface, (2) the deflection angle ( repre-

sents an aircraft attitude change, and (3) the parameter C represents the

dimensionless distance from wing midchord to aircraft center of gravity

(CG). The wing aerodynamic coefficients are still referenced to the mid-

chord position. The horizontal tail surface contributes a nose-down pitching

moment to the aircraft given by:

Mt -Xt qt St (CL + a ) (40)
t

0

where CLt is taken as positive up and accounts for the combined effects of

0

tail incidence, downwash at the tail, elevator setting, and initial aircraft

attitude. The following definitions are useful:

Kt t S t at
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Kt X q S: • " " at

qSc c q S

where c is the wing mean, or reference, chord. Note the equivalence between

K here and K from Equation (32).
t

When the aircraft is in moment equilibrium, the summation of moments

about the CG equals zero. This is basically a balance between wing moments,

Equations (33), and tail moments, Equation (40). Equating these two to zero

and solving for 0 gives the aircraft trim attitude, where 0 Is the change

in attitude from the initial assumed angle.

1 jWsin--- (A- LlIJ [s] {M) + 1 Jr ([] (Li)tSc-X %tSC-X q-- (-[J[]{}

4t Sc-A at

The above value for 0 may then be used in Equation (31) to evaluate the

trim-corrected wing lift distribution.

Certain static stability problems may also be analyzed. The following

considers the aitr-raft longitudinal angle-of-attack stability. The wing

moment from EquaLion (33) is repeated below, after Equation (31) has been

substituted for lift and regathering terms.

Mw - q(A- LlJ Is] (w}) + &vj)r (B- [lJ (s] {U}) + q$A

The summation of moments about the CG is simply the above wing moment and

the tail moment from Equation (40). The criteria for angle-of-attack sta-

bility is then
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aM - q(X- C ¢SC) < 0

The advantage in using the equations of this analysis for trim and

stability problems is the greater accuracy obtained through the combined use

of two-dimensional airfoil data for both lift and mcment coefficients and

proper spanwise distributions provided by the lifting line theory. It has

become increasingly apparent that pitching moments from CC airfoils have

significant contributions and must be included for an accurate analysis.

CIRCULATION CONTROL WING MODEL

A semispan model of a circulation control wing (CCW) was evaluated in

the DTNSRDC 8- x 10-ft subsonic wind tunnel to experimentally verify the

existence of the CC reversal phenomenon and to provide data on the behavior

of a torsionally soft CCW for comparison with theory. The wing model con-

sisted of one blade from a CC helicopter rotor model and provided full-span

blowing. The standard rotor model setup was used for the CCW test since

data acquisition, data reduction techniques, and air supply lines were

established for this configuration. Figure 13 shows the CCW model in the

wind tunnel. The wing was mounted in a zero sweep position on the rotor

head, which was locked for this test to prevent rotation. All force data

were taken from the wind tunnel balance frame by using Toledo scales and

a Beckman analog-to-digital converter. Lift scale accuracy is believed to

be within + 0.1 lb and pitching moment within + 0.1 ft-lb. Each data point

is an average of 10 to 12 records taken on the Beckman system. Wing duct

pressure was measured by an internally mounted Kulite presstire transducer

(type CQL-080-25, 25 psia, + i1). Air mass flow to the wing was measured with

a venturi meter in the air supply line.

Geometry of the CCW model is given in Table 1. The semispan model

measured 40 in. (1.016 m) from the head centerline to the wing tip. Circu-

lation control airfoils extended from Station 4 (0.1016 m) to Station 39.88

(1.013 tn) with a linear variadlon of airfoil thickness and camber in between.

Root and tip airfoil geometry are shown In Figure 14. It is emphasized that
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TABLE 1I CIRCULATION CONTROL WI.NG MODEL GEOMETRY

Wing Parameters

Semispan, ft/rn 3.00/0.914

Chord, in/cm 3.2/8.13

Geometric Twist, deg -8.63

Airfoil Parameters

Root Tip

Thickness Ratio, t/c 0.25 0.15

Camber Ratio, 6/c 0.0625 0.0

Coanda Radius Ratio, R/c 0.0497 0.0403

Slot Height Ratio, h/c 0A0015 0.00312

- 3.2 INCHES

TIP SECTION

RoOr SECTION

Ix Figure 14 - Airfoil Geometry of CCW Model
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thke model wing geometry was actually designed for rotary wing application

and was used in this study only because of its availability. The geometry

does not reflect current designs for application of CC airfoils to fixed

wing aircraft. However, it does reflect characteristics which are basic to

current CC airfoils, e.g., high lift augmentation and pitching moment of

significant magnitude. As such, the test results are sufficient to identify

the parameters of importance to this study and to serve for comparison to

the theory presented later.

Two types of data were taken with the model wing. For the first set,

the wing was rigidly mounted to its support, and a range of wing incidencc

angles and jet momentum provided a performance map for the configuration and

served as a reference for the second data set. For the second set, the CCW

was mounted to a torsionally soft, spring-restrained, root-end attachment

which allowed a rigid body mode of response to the aerodynamic pitching

moments that simulated the distributed aeroelastic response of a full-scale

wing. Such a device was needed to provide a low tcrsiý'n stiffness consistent

with the limited dynamic pressure range of the wind tunnel. Since the

results depend directly on this device, it will be described in some detail.

Figure 35 illustrates the mechanism that allows this torsional degree

of freedom. Two sets of ball bearings join a fixed outer ring (attached to

the rotor head) and a free inner ring to which the wing is attached. The

inner ring has a through-center hole for the wing air supply. Torsional

freedom is restrained by two linear springs at the top of the mechanism.

One end of each spring is attached to the rigid outer ring. Stops on the

arm prevent torsional deflection beyond about + 14 deg (this also correspondt;

to the compreszed length of the tension springs). The mechanism was de-

signed to allow wing torsional freedom about one of three chordwise positions

-0.4c, 0.5c, or 0.6c. The 0.4c position was not used sit-ce it resulted in

excessive noae-down deflections for the stiffness used.
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Figure 15 -Soft Torsion Root Attachment Device

BACK PLATE

AIR

HOLE

Figure 15a -Exploded View

Figure 15b - Assembled View
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Figure 15c -Installation for E 0.0

Figure~ 'I5d Installati~on for ~;=-0.10
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Figure 16 indicates the arrangement of the springs relative to the

LINEAR SPRINGS

CCW ATTACHMENT ATrACHED TO
(ROTATING INNER RING) 2.75 IN NONROTATING•:•,,,,=,,,OUTER RING

Figure 16 - Details of Wing Root Attachment Device

centerline of rotation. The equivalent rotational spring constant K= 2Kr 2

was calculated from the average linear spring constants to be K0 = 4.7505

ft-lb/radian. Figure 17 shows the linear calibration for each spring and

the normal spring operating range. Differences in the preload values for

the two springs are unimportant since they do not fall within the operating

range.

Wing incidence angle was set by initially allowing the wing to come to

a torsional equilibrium, where the torsional spring balanced any wing

gravity moments. Torsional freedom was then locked out and the desired

incidence angle was set. Thus when the lock was released, the wing was

in equilibrium at the desired incidence.

The second data set was taken by using the soft torsion mechanism for

several values of Initial wing incidence and a range of jet momentum. Addi-

tionally, free-stream q was varied to obtain the desired results. tt low

q, the torsional. spring restrained the deflection to small values which
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Figure 17 - Linear Calibration for the Two Springs

corresponded to a high ratio of spring stiffness to aerodynamic pitching

moment. The signiificant deflections occurring at higher q provided experi-

mental data in the regions of torsional divergence and CC reversal. During

the entire test program, the model was visible through plexiglass panels

in the wind tunnel walls and the observer recorded estimated torsional

deflections when appropriate to ensure correct interpretation of the data.

A particular run was terminated whenever the model wing reached full de-

flection limits, as noted by the observer. This data set will be presented

and later compared to the theoretical analysis.

TORSIONALLY RIGID MODEL WING

The lift coefficient behavior of the torsionally rigid CCW model is

shown in Figure 18 for" a range of incidence angles and blowing magnitudes.
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The data shown for the CCW model follow the same tiends as previously shown

for the basic CC airfoil, namely, increasing lift with both increasing jet

momentum and increasing incidence angle. Wing root pitching moments are

shown in coefficient form in Figure 19 for the same case. Root pitching

moments were measured by four strain gages mounted at the wing root in a

Wheatstone-bridge arrangemcnt rather than by wind tunnel balance scales in

order to provide greater accuracy for the relatively low magnitudes of wing

pitching moments.

MODEL WING WITH ELASTIC AXIS AT 0.5 CHORD

Torsionally soft wing root conditions were examined over a range of q,

initial incidence, jet momentum, and EA position. In general, the test

procedure was to hold wind tunnel q constant and to vary wing duct pressure,

or C . Since the root spring constant was fixed, the dimensionless stiff-
Pw

ness C was varied by changing wind tunnel q.

Figure 20 shows the elastic wing lift variation with C at different
w

q settings, or different C, for three initial aTIP values. Rigid wing data

are also shown fcr purposes of compar-son. The powerful effect of dimension-

less stiffness C on the wing lift is clearly evident in Figure 20a (initial

a TIP = - 3 deg); it resulted in a condition of CC reversal for the lower

value of 4. The reversal condition did not show up for the higher t even

at the extreme C values shown, but the reduction of lift effectiveness
Pw

due to gradually decreasing angle-of-attack was quite evidcnt. In contrast,

lift effectiveness was seen to improve at low C f( th,_ low C condition,
w

corresponding to small positive pitching moments. But as C increased, the
Iw

pitching moment decreased to approach zero, causing a reduced deflectwon

angle. The reduced angle-of-attack resulted in further reductions of

pitching moment until finally the wing could no longer sustain a positive

pitching moment and deflection angle. At a slightly higher C , tie pitch-

ing moment became negative, causing an angle-of-attack reduction which

62



CV) D cr In -4

0,1 Iq 3T

~ ~j~'~jgV

00

u'-

00
'4

00

U-4-

0 0n

C-4
w '-

0

0I 00
00

or 0

w

C-I

6 663



Figure 20 - Effect of Torsional Stiffness on the Lift Coefficient Character-

istics of the Elastic CCW Model at Different Initial xTIP Values
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Figure 20a - Initial aTIP -3 Degrees
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further reduced the pitching moment. This resulted in a sudden angle-of-

attack change to a new equilibrium position between the aerodynamic moment

and the spring restoring moment. Beyond this point of CC reversal, further

C w increases were characterized by reduced wing CL. In this region, in-
w

of-attack. The angle-of-attack change caused a still larger negative pitch-

ing moment that affected the new equilibrium position. The result was a

net reduction in wing CL due to the overpowering reduction in angle-of-

attack. Figure 20a shows that this region continued until the deflection

limit was reached.

The hysteresis effect shown is aerodynamic in nature. On the return,

the angle-of-attack is already at a large negative value. As C w is de-

creased, the pitching moment magnitude is decreased. However, the negative

deflection angle tends to support itself by maintaining the large negative

pitching moment magnitude. The double dependence of lift and pitching

moment )n angle-of-attack and jet momentum suggested the possibility of some

aeroelastic problems not considered in the study. Specifically, the in-

tentional or inadvertent addition of oscillating C to the above-mentioned
w

hysteresis could potentially result in a condition similar to stall flutter.

The return points were eliminated from the plot for an initial tTIP of

-4 deg (Figure 20b) to show more clearly the effects of stiffness E varia-

tions. The onset and full development of CC reversal is evident as C de-

creased. There was a reduction in both lift effectiveness and control

effectiveness at the large C, but the deflection angle limit was reacned

before a reversal condition was obtained. A conditioa of CC reversal was

obtained at 4 - 1.621. The wing lift remained nearly constant beyond the

reversal point even though C was increased to three times its value at re-

versa!. This reflects the balance between increasing lift due to jet

momentum and decreasing lift duc to decreasing angleof-attack. Finally at

.- 1.471, the reversal. condition occurred at a lower value of C and was
w
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characterized by significant reductions in lift for further increasas in C
1w

(DLw/ MV <O).

The trends changed at an initial wing incidence of -6 deg (Figure 20c).

At this low incidence, the pitching moments started off negative, causing a

reduction in lift even at C - 0. The initial deflection angle was ob-
w

served to be approximately -7 deg, putting the blade tip at a geometric

angle of about -13 degrees. As jet momentum was increased, the deflection ¶
angle continued to decrease, but lift increased and did not display a CC

reversal condition. The deflection limit, approximately -14 deg, was

reached at C. Z 0.09. Since the elastic wing was against the deflection
w

stops for C1w values above this point, the setup prevented finding a CC re-

versal condition if one did exist. Theoretical calculations predicted a CC

reversal at C 0.16, with deflection angles beyond the range of the
Pw

model.

Life effectiveness (L.E.) and control effectiveness (C.E.) were evalu-

ated by comparing the data of Figure 20b to the rigid wing data of Figure

18. The L.E. is a direct ratio of elastic wing to rigid wing lift and was

calculated directly. Figure 21 shows the variation of L.E. with CL for

each q value for an initial aTIP of -4 deg. Large initial values of L.E.

resulted from the initial nose-up pitch attitude of the wing at C - 0. As
w

C was increased, the pitching moments decreased and then became negative,•w
resulting in reduced pitch attitudes, reduced lift, and reduced L.E. It

should be noted that the L.E. plot does not provide information on the

occurrence of CC reversal. In fact, the elastic wing lift was still greater

than the rigid wing lift (L.E. > 1.0) shortly after the reversal condition.

Likewise the C.E. parameter, discussed below, gives no information on the

large initial lift of the elastic wing as shown by L.E. However the two

parameters do provide two different types of information for examining

elastic wing behavior.
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The C.E. was defined by Equation (24) relative to the jet momentum at

some reference station on the wing fhVj)r. The C.E. of the model wing data

may be evaluated by observing that jet momentum at some reference station

bears a fixed relation with the wing total jet momentum, or ihV j)r = Q T V,

where the Q factor depends on distributed slot height and strip width at the

reference station. Furthermore, since this relation is unaffected by wing

elasticity, it is the same for the elastic wing as for the figid wing. There-

fore C.E. may be easily evaluated from the model wing data by the equivalent

equation expressed in coefficient form:

3CL/C Pw (elastic wing)

C.E. = CL/ CP (rigid wing)

w

Figure 22 indicates the variation of C.E. with CL for each value of q and

an initial oTIP = -4 deg, as evaluated from the data of Figure 20b. CC re-

versal is indicated by those points where C.E. = 0. Negative values of

C.E. denote the condition beyond CC reversal whtre increases in jet momcntum

result in decreases in wing lift.

A comparison of Figures 21 and 22 shows some unusual conditions. At

the highest q and C w 0, the L.E. was quite high and C.E. was positive

but rather small. This corresponds to a high lift condition (due to a posi-

tive deflection angle) but a very low control power condition. The low

control power stems from, the fact that very high section angles ou the in-

board position of the wing :ause a partial angle-of-attack. stall or the

formation of a leading edge bubble. The circulation -'trol becomes rather

ineffective under these conditions and, for the wing, resulted in a signifi-

cant loss of control. The C.E. went to zero for the high q curve of Figure

22, denoting CC reversal. However, the value of L.E. was still greater than

I.C at thit. point. Again, this was a relatively high lift condition even

though control effectiveness nat become zero. The region C 0.80 showed

"--LL
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strong control reversal (C.E. < 0) and associated strong reductions in L.E.

as lift and angle-of-attack dropped rapidly with further increases in C
lw

The L.E, and C.E. values at initial a TIP = -6 deg shown in Figure 23

were calculated from the data of Figure 20c. The L.E. began as a strong

negative value at C = 0 but rapidly increased to become positive for11

w
2
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z
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I-)

U. q =12
U.

= 1.855

-4

ELASTIC AXIS AT 0.5 CHORD

0 1 2 3 4 5
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Figure 23 - Variation of Elastic Wing Lift and Control Effectiveness with
Wing Jet Momentum Coefficient

C > 1.20. This behavior is quite different from that displayed in Figure

21 which showed high initial values of L.E. and then a drop with increasing

C w The negative initial valtie of L.E. is attributed to negative initial
w

deflection angle. This drove the elastic wing to negative lift compared to

a small positive lift for the rigid wing. The reason for increasing lift

of the elastic wing with increasing C is less clear, especially since the
Ww
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deflection angle went te larger negative values as C increased. It is be-

lieved that the wing inboard section was at a more favorable operating con-

dition and provided a strong lift response to the increasing jet momentum.

Examination of the wing center of lift position (rolling moment/lift) indi-

cates a significant inboard lift in support of this argument. Figure 24

2
INITIAL aTIP -6 DEG

TL

C.
I-.

0

I-

0.2 00 .

ELASTIC AXIS AT 0.5 CHORD

o.2 0.4 0.6 0.8 1.0
CENTER OF LIFT OFFSET, y/Q

Figure 24 - Elastic CCW Center of Lift Variation with Wing Lift Coefficient

shows that the center of lift was outboard for the negative lift condition

on the elastic wing. This suggests that the inboard section may have been

developing posLtive lift becaus-• of camber and jet momentum even though the

net wing lift was negative. At positive wing lift, the center of lift was

around the midspan position, reflecting a nearly uniform diitrihution

across the semispan.

MODEL WINC WITH ELASTIC AXIS AT 0.6 CHORD

The root attachment mechanism shown in Figure 15 was repositioned so

chat the center of rotation of the device corresponded to the 0.60 chord
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position of the model wing. This established the elastic axis at 0.6 chord

or EA offset of C -- -0.10, where C = 0.50 - EA/c. The center of rotation

was shifted to have the CCW model in the same position relative to the

wind tunnel and thus avoid any need to consider model position in the data

reduction program.

Since the model center Af gravity position wP forward of the elastic

axis for this configuration, static moments resulted. These were compensated

for by the spring restraint, leaving the model a6. an equilibrium angle - a

balance between static moment and spring restoring moment. Model incidence

angles were then set from this condition as previously described. The

initial spring deflection required to establish moment equilibrium reduced

the usable range of pitch-down deflection and increased the usable range of

pitch-up deflection. This did not hinder the results in any way since model

deflections were predominantly in the pitch-up direction for the aft EA

position.

An EA offset of C = -0.10 results in rather strong pitch-up moments

from the wing lift (at 0.50 chord) acting through the 0.10 chord moment arm.

This moment contribution from lift increases with C and a and tends to con-

ceal the decreasing negative pitchivig moments resolved at the airfoil mid-

chord. Figure 6 has previously shown the pitching moment trends as all

forces and moments were resolved to different chord locations. Extrapola-

tion of those data to a 0.60 chord resolution point would show that the net

pitching moment increases with C . This behavior is opposite to that

shown for the 0.50 chord resolution point. It is interesting to note from

Figure 6c that pitching moments tend to be independent of C when resolved

to a 0.55 chord location.

The above discussion siggests that deflection angles should be positive

for the aft EA position. Divergence conditions are also suggested by posi-

tive pitching momentm which increase with angle-of-attack. The CCW wind

tunnel test showed an immediatp pitch-up divergen-e for an initial incidence

angle of aT P -3 deg, even for zero blowing. Obviously meaningful dataLI



were unobtainable for this incidence angle. However, data were obtained for

OTIP -8 deg over a broad range of blowing conditions. These reduced

angles of attack produced small negative initial pitching moments. As C
w

was increased, the moments became positive and resulted in pitch-up de-

flections of the model wing.

Figure 25 presents the elastic wing lift coefficient behavior versus

C for two different initial aTIP values. For aTIP = -6 deg (Figure 25a),

the zero blowing deflection angle was estimated to be -3 deg, corresponding

to a negative initial pitching moment. As C was increased, the deflection
•w

angle became positive and produced rapid increases in wing lift. The deflec-

tion angle reached a maximum of about + 9 deg at C 0.20, which corre-

sponds to a of about +3 deg. Inasmuch as this angle is beyond the wing

stall condition, further C increases produced very little change in wing

C. 
wCL•

Comparison between the CL characteristics of Figure 20c (e = 0.0, q

12.0, • 1.855) and Figure 25a (; = -0.10, q = 7.69, • = 2.895) shows a

marked difference in the overall elastic wing response to changes in the

elastic axis location. The elastic wing C, was considerable less than that

of the rigid wing for 6 = 0.0. However the case for c = -0.10 showed

regions of substantia] improvements in elastic wing CL relative to that of

the rigid wing. It should be noted that because of the reduced q, the

relative stiffness was higher for Figure 25a than for Figure 20c. An

attempt was oade to evaluate the wing at C = -0.10 for q = 12.0. However

the reduced relative stiffness resulted in abrupt changes in angle-of-attack,

giving the appearance of a divergent condition.

The elastic wing response for C = -0.10 at an initial angle of TP =
TIP

-8 deg (Figure 25b) was similar to that shown at XTIP -6 deg (Figure 25a).

The initial deflection angle was estimated to be -6 deg at zero blowing.

The larger negative deflection angle an' reduced wing CL were expectcd for

UriP = --8 deg compared to a TI, -6 deg.
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Figure 25 - Elastic Wing Lift Coefficient Behavior versus C for the
liw

0.60 Chord EA Location at Two Initial cTIp Values
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The L.E. and C.E. shown in Figure 26 were determined from the data of

INITIAL aTIP = -6 DEG
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Figure 26 - Elastic Wing Lift and Control Effectiveness for the 0.6 Chord
EA Location and Initial a TIP = -6 Degrees

Figure 25a (initial oTLP w -6 deg). Values of L.E. started off negative but

quickly approached 1.0 and above as C was increased. Values of C.E. ranged

from about 0.4 to 2.3 4n the more important C region. The values around
w

2.0 and above indicate a potential for increased control effectiveness by

proper EA placement. However the C range where this occurred waa very

limited, and any such gains must be traded off against the problems of opera-

tion near divergence boundaries.
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COMPARISON CF THEORY AND MODEL WING DATA

The previously derived theory is now compared to results from the wind

tunnel evaluation of the CCW model. Rigid wing conditions are used as a

baseline to establish the relative ability of the theory and two-dimensional

data to predict three-dimensional wing behavior. Comparisons include the

L.E. and C.E. parameters and the limiting conditions of CC reversal and

torsional divergence. First, however, it is necessary to describe the

computer-programmed solutions for the theory.

DESCRIPTION OF PROGRAMMED SOLUTION

The equations derived In the section on wing root elasticity were com-

puter programmed in Fortran IV for use on a CDC 67U0 digital computer. The

program calcuations folloved the same procedure rutlined in the afore-

mentioned section. Specifically, the rigid wing lift distribution was

solved first by an iterative method, resulting in reference distributions

of Ct, Cm , C, C , induced angle, and associated air oil derivatives.
50

These reference distributions and derivatives were theia used in a linear

analysis which evaluated L.E. and C.E. as a function of q for a given wing

stiffness and jet momentum distribution. Note that this corresponds to

decreasing values of dimensionless stiffness r and jet momentum coefficient

C•. Airfoil derivatives evaluated at the reference condition were also

used to evaluate CC reversal speed qR and torsional divergence speed qD" A

flow chart of the program is shown In Figure 27.

The program allows for arbitrary inputs of wing semispan, chord, slot

height distribution, root and tip thickness ratio, twist angle distribution,

root stiffness, and initial incidence angle. In keeping with the CCW model

geometry, the program is currently limited to constant chord and full-span

CC airfoils, but modifications to a more general case would not require ex-

tensive changes. The N matrix of Equation (11) is internally evaluated by

the program from the above input geometry. At least one tabulated set of

two-dimensional CC airfoil characteristics is also required. If the program
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Figure 27 - Flow Chart of CCW Analysis Program
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were modified to accommodate partial-span CC airfoils, then an additional

table of the appropriate two-dimensional conventional airfoil data would

have to be provided also.

Several characteristics of the analysis were voted during use of the

program. The first concerned the angle-of-attack stall conditions pre-

viously noted. Although this required rearranging the order of solution, it

did not solve all the problems of a discrete numerical solution. Any

parameter which causes a sudden change in the spanwise lift distributiorn

would physically be expected to cause corresponding local changes in the

induced velocity and induced angle distributions. The induced angle change

would diminish as distance from the disturbance increased, and the magnitude

of the change would depend on the magnitude and distribution of the disturb-

ance. It is a basic advantage of lifting line theory that it can reflect

such interactions of one station with another and in quantitative terms.

When this interaction is combined with a discontinuous distribution of

even ose parameter in a discrete strip analysis, the result becomes dependent

on the number of strips into which the wing is divided. This is easily seen

if one considers that in a strip analysis a discontinuity can be over no lvss

than the width of one sttip. Likewise the effect of the discontinuity on

adjacent sections must be over their entire widt'i, and so the minimum impact

may be determined by the strip width. Since CC airfoils depend on two in-

dependent parameters, cc and C, there is ample room for highly nonlinear

distributions; these appear as discontinuities in a strip arilysis. Each

section Cz depends on the local induced angle, and this dependence is not

unique for operation in the gradual stall region. The characteristic be-

comes compounded by the interaction between adjacent wing stations, as pro-

vided for by lifting line theory, and results in multistable numerical solu-

tions that lead to erroneous answers or simple nonconvergence.

The missing inigredient in the above analyric which allows multistable

conditions is the very one which in nature prevents the problem, namely,

viscosity. Viscous effects on the wing prevent sudden changes in adjacent

airfoil pressure distributions even if a slot height suddenly changes. The
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simplest means of accounting for this in the analysis is to smooth the input

slot height distribution and to simultaneously increase the number of strips

(decreasing strip width), or to change the distribution of strips. This

reduces local variations and also allows a more accurate analysis of their

effect. This analysis used 14 wing segments with the following nondimen-

sional end points: 0.0, 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.68, 0.75, 0.80,

0.85, 0.90, 0.95, 0.98, 1.00.

Figure 28 shows typical output from the computer program for rigid wing

results and for the calculation of qD9 qR' L.E,, and C.E. The top line prints

out the more significant input parameters, primarily for identification.

The second line contains calculated values of the semispan wing air weight

flow in (pounds per second), jet velocity in (feet per second), wing jet

momentum coefficient C• , compressor horsepower required, and an equivalent

drag term calculated from the compressor power. The next two lines are the

net lift and pitching moment of the semispan wing and their respective co-

efficients. The series of columns then show span distributions of airfoil

thickness ratio (T/C), local angle-of-attack (ALPHA) in degrees, induced

angle (IND ANG) in degrees, local section C (CMU), local section Ck (CL),

wing segment lift (LIFT), and local section Cm50 (CM50). Divergence and

CC reversal predictions are on the next two lines, respectively. The next

section of output, headed LIFT AND CONTROL EFFECTIVENESS, shows the varia-

tiot-. of these parameters with increasing dynamic pressure.

COMPARATIVE ANALYSIS

Theoretical predictions of the CCW model lift and pitching moment were

made by using the basic two-dii~ensionai airfoil data available at DTNSRDC.

Airfoil characteristics were corrected in the computation for variations in

Reynolds number and slot height-to-chord h/c ratios which differed from that

of the basic data.*

Details of these corrections were reported informally by the author in
March 1973 as NSRDC Technical Note AL-290.
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S"2___________________ __2_ 2 _ ,- -- •- Z .

CC WING ANALYSIS

SPAN CHORD PSIG VEL Q Tlý' ALF RN

3.000 .267 .0 100.0 12.0 -3.0 170000.

WDOT VJE7 CMUW HPC EQDRG

.001 10. .000 .000 .0

PICID WING LIFT = 5.0 CLWING = .539

RIGID WING MOMFNT = 109 CM5OWING = .035

STA T/C ALPHA IND ANG CMU C1 LIFT CM50
.15 .248 1.62 1.79 •Ono 1.19L 1.14 .086
.4S .237 3.33 1.19 .000 1.076 1.03 .082
.75 .227 2.79 .85 .000 .929 .89 .070

1.05 .217 2.17 .58 .000 .771 .74 .057
1.35 .207 1.55 .32 .000 .606 .58 .044
1.65 .196 .88 .10 .000 *440 .42 .028
1.92 .187 .28 -. 09 .000 .293 .22 .011
? .15 .179 -. 17 -. 31 .000 .170 .11 -. 001
2.33 .173 -. 49 -. 52 .000 .072 .03 -. 010
2.48 .168 -. 70 -. 75 .000 -. 0o5 -. 00 -. 016
2.63 .163 -. 85 -1.05 .000 -. 074 -. 04 -. 020
?.78 .158 -. 87 -1.47 .000 -.127 -. 06 -. 022
2.90 .154 -. 66 -2.03 .000 -. 138 -. 04 -. 017
2.97 .151 -. 22 -2i69 .000 -. 0O8 -. 02 -. 006

DIVERGENCE. C = 16.9 V = 118.8 K/QSC)D = 1,32

CC REVERSAL. C = 14.1 V = 108.3 K/QSC)R = 1.57

LIFT AND CONTROL EFFECTIVENESS

C LIFT L.E. C..E. ROOT ANG
12.0 8.23 1.642 .533 3.54
13.0 10.18 1.874 .365
14.0 13.24 2.263 .081 6.95
15.0 19.17 3.058 -. 4Q6 11.32
16.0 37.24 5.569 -2.321 25.14
17.0 -41A.21 -58.859 44.501 -329.29

SFigure 28 Typical Program OuLput

83



Slot height magnitude affects the h/s correction to airfoil C• and is

the primary term in the pressure-mass flow relationship which determines the

C value. Internal duct losses for the model had been measured and found to

correspond to an 18-percent loss in the duct gage pressure at the wing tip.

This factor was used in the analysis when cal~ulating pressure ratio and jet

velocity. Figure 29 indicates good agreement between test data and theoreti-

cal values of C for a range of pressure ratios. This agreement is basic

to the prediction of wing CL - C relations.

THEORY q = 12.0

- 0.3
Z

U-

0
C-)

S0.2
-DATAZ

0

I-

0.1
Z

0.0
1.0 1.2 1.4 1.6 1.8

PRESSURE RATIO, P/Po

Figure 29 - Comparison of Theoretical and Experimental Values
of C for a Range of Pressure Ratios

Iw

The analysis was originally derived and programmed for application to

*i normal full-span wings, but it is applied here to a wing model of one-half

span. This difference in geometry is believed to be alleviated somewhat by

the sizable hub to which the model wing was attached; see Figure 13. Never-

theless the predicted values of induced velocity at the wing inboard
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stations are affected by the inherent assumptions of a full-span wing. Con-

sequently some differences may be expected between the one-half span model

data and the theorectical predictions.

Rigid Wing

Figure 30 gives predicted values of wing CL versus C w for" several
Iw

SaTIP > DEG
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0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

WING JET MOMENTUM COEFFICIENT, CA"

Figure 30 - Predicted Rigid Wing Lift Coefficients for Several
Initial a TIP Values

incidence angles. In general the calculated values agreed quite well with

those measured in the wind tunnel. There were two notable differences how-

ever. First, the model data showed much less initial lift augmentation
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than predicted by the program. A comparison of rolling wotments for •t -6

deg and C.w 0.02 shows that the model wing was still lightiy loaded on the

outboard sections, with the center of lift at about 12 percent span. Pre-

dicted center of lift for the same conditions is more like 35 percent span,

representing more outboard loading. This suggests that the outboard regions

of the model wing did not attain theoretical values of initial augmentation.

Moreover, measured wing lift in this condition was only 4.5 lb and so small

differences in section C0 would account for considerable variations in the

center of lift.

The second notable difference between model data and predicted C• con-

cerned behavior at extreme C values, C > 0.20. Model data in thisiI'
w w

region showed that the wing CL became less sensitive to angle-of-attack

setting, but predicted value of CL at extreme C w retained about the same

sensitivity to angle-of-attack. Most of this difference is attributed to

the C range of the two-dimensional data. Two-dimensional data are normally

limited to the practical range 0 < CG < 0.24, which is also the range of

data used in curreot pe-formance prediction programs. Wing lift predictions
which require section C greatc'r than this are based on a simple linear

P
extrapolation of two-dimensional data. Accordingly, the general agreement

in CL magnitude is consid&red vcry good, and it is not surprising that non-

linear behavior is not predicted in the high C range.

Typical spanwise distributions of predicted CZ and a are shown in

Figure 31. At zero blowing, the program predicib an upwash on the outboard

portion of the wing (induced by that portion which develops negative Ck) and

a small downwash inboard. These induced angles are algebraically addded to

the wing geometric twist angle to give the local effective angle-of-attack

distributions shown. At moderate values of C , a downwash is predicted
P w

over most of the wing span corresponding to positive C Z However, the wing

tip station will retain an upwash until extreme magnitudes of C are reached.

Even under these conditions, the tip downwash will be much less than that of

the adjacent inboard stations.
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Predicted values of wing root pitchig moment C are shown in Figure
m150

32 for a range of C and (I. The predicted trends and magnitudes are in

0.2

z
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z
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Figure 32 - Predicted Rigid Wing Root Pitching Moment Coefficients

fair agreement with measured data. Model wing data showed generally lower
C values than those predicted. It is believed, however, that the measured

i 5 0

data were low and that the predictions are more representative of those

moments developed by the model wing. The elastic wing responses in Figures

20a and 20b support this belief. In those figures, the initial wing

response was to pitch up for (xTIP of -3 and -4 deg, as indicated by the

initial wing increase in lift. This require- a positive pitching moment at

C1J "0 for these angles. However, as shown in Figure 19, the pitching
w
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moment measured from rigid wing data was slightly negative for aTIP - -3 deg

and C 0. Linear interpolation across the angles would give even moreliw

negative values of pitching moment for (TIP = -4 deg. These elastic wing

responses suggest that rigid wing pitching moment behaves more like the pre-

dicted values of Figure 32 than the measured values of Figures 19.

Overall, the rigid wing is reasonably well represented by theory. This

is, of course, a necessary prerequisite to enable predictions of divergence

and CC reversal conditions. Calculations of L.E. nnd C.E. also depend on the

basic rigid wing characteristics, as will be shown in the following section.

Elastic Wing with Axis at 0.5 Chord

As shown in Figure 27, elastic wing characteristics are obtained from

the converged solution of the rigid wing lift distributions. The elastic

wing properties are summarized in the computer output directly after the

rigid wing detailed output shown in Figure 28. The predicted elastic wing

characteristics will now be shown for selected 'ases corresponding to pre-

viously presented CCW model data. These predicted values were generated

with pressure increments of 0.1 psig in order to accurately define the elas-

tic wing CL, L.E., and C.E. variations with wing Cw. This pressure incre-

LP4
ment corresponds to C increments of 0.0045, 0.0040, and 0.0036 for the q

values of 12.1, 13.7, and 15.1, respectively. Larger increments allow in-

accurate fairings which would not represent the intricacy of the analysis.

Increments of C for the model data were about three times those used

for the analysis. This required the L.E. and C.E. parameters to be evaluated

from fairings through the data. As such, these parameters evaluated from

model data are representative, but they may lack detail in those regions

where CL changes rapidly.

Tnitial conditions are also different between model data and theory.

The model data were obtained by successive increments in pressure. There-

fore, as a new value of C1w was being set, the model was being perturbed

IT
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from its CL and deflection angle at the old setting. In contrast, the theo-

retical prediction is based on an initial condition of zero deflection angle

for each point (i.e., the analysis is not one of time history and so does

not have memory). Figure 20a indicated that the initial condition signifi-

cantly intluences wing behavior, especially aL involving larger

deflection angles. Thus this difference in intial conditions between theory

and experiments can be expected to affect their agreement at any given point,

but it does not reflect on the validity of the theory. The difference

occurs only when deflection angles are relatively large, and this happens

only when the boundaries of CC reversal and torsional divergence are ap-

proached. Therefore, the initial condition is significant only to the

extent that it affects particular behavior in the proximity of these

boundaries. In contrast, the validity of the theory lies in its ability to

predict where the boundaries are and to predict the general wing character-

istics in the flight regime prior to such boundaries.

Predicted elastic wing lift coefficients are presented in Figure 33 for

initial a TIP = -4 deg. (Comparative model wing data for this angle was

shown in Figure 20b.) At zero blowing, the trend of increasing wing CL with

increasing q is in good agreement with the data. The predicted behavior

also shows that the CC reversal condition will occur at zero blowing for q -

15.1 and will reoccur at C. w: 0.02. This also agrees well with model data.
w

The intent of the analysis is to predict those operating conditions at

which CC reversal will occur and to provide a means of evaluating proximity

to those conditions. To this extent, the theory has a good correlation

with model data.
Predicted values of lift effectiveness are indicated in Figure 34 for

an initial angle of aTIP -4 deg. (Comparative data were shown in Figure

21.) The predicted behavior for q = 1.2.1 (4 - 1.836) is very similar to that

shown by the data. At zero blowing (minimum CL), the predicted L.E. was
within 3 percent of the data, and for CL - 2, the difference was within 5

percent. The agreement was less satisfactory for intermediate values of
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CL. As q is increased, the predicted L.E. also increases for zero blowing

conditions. In general the predicted L.E. agreed with the data, showing the

strong q effect as CC reversal and torsional divergence boundaries are

approached.

Torsional divergence is indicated by the sharp dropoff in predicted

L.E. at the higher C value in Figure 34. Note that the boundary is pre-
L

dicted to approach rather quickly for q = 13.7 and q - 15.1 as C , and

hence CL, is increased. In this case the torsional divergence is in the

pitch-down direction, as indicated by the reduction of L.E. in this region.

Predicted values of C.E. are given in Figure 35 for an initial angle

of aTIP -4 deg. (Comparative data were shown in Figure 22.) The theory

shows a consistent peak in the C.E. for all three q values shown at CL Z 1.0.

This same characteristic was seen ir the model data for each q value, but 1-t

occurred at the slightly shifted position of CL ~ 0.70.

The model data exhibited an unusual behavior of CC reversal at q f 15.1

(see Figure 23). There was an initial condition of CC reversal at C = 0
Pw

(minimum CL), but a rapid recovery as CL was increased until it reached the

above-mentioned peak in C.E. As CL was further increased beyond the peak,

C.E. dropped as rapidly as it had previously increased, and again plunged

deep into the CC reversal condition (C.E. < 0.0) until it reached a minimum

C.E. Beyond this point, the curve again changed direction and went back to

approach C.E. - 0.0, but was stopped by the model deflection limits. At

f 13.7 and 12.1 the mode] data exhibited the same general behavior. This

very complex behavior reflects a delicate balance between wing aerodynamic

moment contributions from angle-of-attack and from jet momentum. The pre-

dicted behavior shown in Figure 35 reproduced each of the peaks and valleys

demonstrated by the model as it crossed back and forth from CC reversal to

nonreversal conditions.

No tecovery from the final plunge in C.E. was shown in Figure 35 for q

- 13.7 and q - 15.1. This is the same negative torsional divergence shown

by the L.E. behavior of Figure 34.

A comparison between model data and theory would be incomplete without

mention of the two-dimensional analysis presented earlier. The model wing
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response is similar to that artalysis in that toe model, allowed only for root

torsional elasticity. The CCW data of Figure 20b showed that CC reversal

conditions occurred at a C value of about 0.03 for an initial y,''P of -4

deg. It is interesting to compare the two-dimensional value of r (dimen-

sionless reversal stiffness) to the experimental values shown. According

to Figure 31 the local angle-of-attack at tl is value of C and at 90-
w

percent span would be approximately -4 deg. T1his rough angle-of-attack

estimate may be used in Figure 8 to evaluate the CR of the two-dimenrional

analysis. At cx = -4 deg and C I0.03, he prediction that r will be about

1.6 agrees quitýe well with the value of 1.621 (Figure 20b) where the CCW

model first experienced CC reversal. According to Figure 1l, the opera-

tional limit on C should be no less than about 4 ý R to avoid excessive

structural deflections and stay within a 10-percent deviatioi from rigid

wing performance. The use of 4 r for design purposes gives so'ae latitudc

so that the two-dimensional estimate of •R may be all that is required to

avoid CC reversal conditions.

Elastic Wing with Axis at 0.6 Chord

the elastic wing behavior changes dramatically as the elast ic axis is

shifted aft of the 50-percent chord. As was shown in Figure 25a for an

initial angle of aTIP -6 leg, the, CCW mode] exhibited pitch-up tendencies

for a 60-percent chora elastic axis (c = -0.10) as C was increased.
w

Eventually the deflection angle became so great as to cauL;e angle-of-attack

stall on the wing, which is shown by the asymtotlc C,1 characteristic for

C > 0.16. Predicted lift coefficients for the saie case are sho",,n in
Kw

Figure 36. The slightly negative deflection angle predicted at C, 0.0
w

results in a lower CL for the elastic wing than that obtained for the rigid

wing; this is in agreement with the data. As C is increased, the pro-

w
dicted deflection angles become increasingly positive and produce higher

elastic wing CL values. This is also in agreement w fh i(,dle wing datai
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until stall occurs. The theoretical analysis of elastic wing behavior is

based on linear coefficients from the established rigid wing operating con-

ditions, and it is therefore incapable of predicting a nonlinear stall

characteristic created by the elastic deflection. Linearity assumptions are

commonly of a conservative nature.

Predicted variations of L.E. and C.E. for the elastic wing are shown

in Figure 37 for e - -0.10 and an initial angle of a TIP - -6 deg.

3
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Figure 37 - Predicted Elastic Wing Lift and Control Effectiveness for
0.6 Chord EA Location and Initial •TIP - -6 De~grees

§ (Comparative data were shown in Figure 26 as evaluated from the CCW model
S~data.) The predicted variations have trends similar to those for the

model data, but there are also dissimilarities. Because of the aft EA
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location, the elastic wing CL plays a significant role in determining moments

about the elastic axis for these cases. This adds a pitch-up moment contri-

bution at low C conditions in the predicted behavior which did not exist in
Ow

the CCW model. As a result, the theory predicts more positive deflection

angles and correspondingly higher values of elastic wing CL and L.E. than

found for CCW data in the lower C range.Pw

Figure 37 indicates that predicted C.E. trends drop rather steadily from

about 1.3 at zero blowing to about 1.05 at CL = 2.5, with a slight rise at

CL = 1.0. This behavior is very similar to the CCW model data.

Summary
The predicted variations of elastic wing C L.E., and C.E. have beenCL,

* shown for two different EA locations and compared to CCW model data.

Figures 33-35 indicated the predicted elastic wing behavior for a 50-percent

chord EA location as it varies with dimensionless stiffness ?. The pre-

diction of strong reductions in wing performance as C was decreased agreed
well with CCW model data. At the lowest ý value, the theory predicted

repetitive conditions of CC reversal as C is increased, ending in the

prediction of a negative torsional divergence. The repetitive CC reversal

was clearly shown in the modcl data for the same value of C, substantiating

the theoretical prediction. Figures 36 and 37 showed the predicted elastic

wing behavior for a quite different condition where the elastic axis was

located at the 60-percent chord. This EA location involves strong pitching

moment contributions from the elastic wing CL and results in predominantly

pitch-up tendencies. The predicted variations for this condition are also

in general agreement with the model data. The theoretical analysis of

both rigid wing and elastic wing behavior has been seen to represent the

CCW characteristics over a broad range of conditions. The theory has pre-

dicted general trends of L.E. and C.E. as well as particular variations of

these parameters with changing jet momentum and changing dimensionless

stiffness. Finally, the theory has predicted magnitudes of q and dimension-

less stiffness for CC reversal conditions which are in good agreement with

the data.
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TWO-DIMENSIONAL STALL FLUTTER

The stall flutter characteristics of a wing with CC airfoils may vary

considerably from those of wings with conventional airfoils. This difference

is attributable to the gradual stall of the typical CC airfoil and to the

varying combinations of a and C at which it occurs. A detailed discussion

of the phenomenon which creates this stall pattern is beyond the scope of

this paper, but it is contributed to by the larger leading edge radius of CC

airfoils together with the continued forced circulation due to trailing edge

blowing. Figure 2 has presented the angle-of-attack behavior of a typical

CC airfoil for constant blowing rates. As shown, the stall angle lowers

significantly for increased blowing. This behavior creates a stall flutter

condition which involves only the wing bending degree of freedom. The re-

sulting flutter condition occurs basically at the wing first natural frequen-

cy in bending. It is not suggested that this type of stall flutter is the

only one which may develop. The previous chapters have certainly shown the

importance of including torsional moments in any general analysis. Further-

more, the flutter condition may be continued by oscillating values of C in

response to oscillating pressures at the blown slot, or by unsteady aero-

iynamic responses. The coupled bending-torsion wing response is not to be

d.smissed as a possible mode for stall flutter either. It is observed, how-

ever, that stability boundaries are usually lower when they are determined

bY the lower energy levels of structural response. Specifically, it is sug-

gested that a stall flutter involving only wing bending will be lower, and

hence more important, than one involving the higher bending-torsion wing

responte.

The cxp-rimentally observed stall flutter tends to be of limit-cycle

nature at Lhe effective angle-of-attack oscillates about that at C• . In
max

contrast, on the stalled side of the curve, negative aerodynamic damping

extracts energy from the free stream, thus adding energy to the aeroelastic

wing system. The A.imlt-cycle behavior is apparently caused by the balance

of structural damping ani the symmetry of C about C, (the gradual stall).

max
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FORMULATION

Consider a section of CC wing acting in two-dimensional flow. The

section is torsionally rigid and resLrained in heave through a spring mount

and damper, as shown in Figure 38. The equation of motion for this system is

-- LINEAR
SPRING

DAMPER

OSCILLATING WING

Figure 38 - Wing Representation for Two-Dimensional Stall Flutter

6+2yw6 + W 26 (1/m) F(t) (41)
n n

where m - mass per unit length

wn - undamped natural frequency

y - structural damping factor

F(t) - aerodynamic forces - qc C£

c- C, (i (t))

The behavior of C2 at a constant C may be catagorized as linear or non-

linear. Linear behavior with angle-of-attack may be represented as
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C -C + C Act'
0 ,

where Ac is the change in angle-of-attack due to bending oscillations such

that Ac• -6/V,.. Prior to stall, C• > 0; this represents conventional aero-
a

dynamic damping and it adds to the structural damping. For some region

beyond stall, the lift curve slope remains negative over a significant a

range for CC airfoils. This tends to cancel structural damping and may or

may not cause divergent oscillations. Stability for this case is simply

defined by:

2ywn + (1/m) q c C. /V. > 0

Nonlinear behavior with angle-of-attack occurs near the stall condition.

In order to evaluate the system characteristics in a closed form, it is

necessary to approximate the nonlinear C - a relationship in this region by

some continuous function. A parabolic function was chosen for its con-

venience and the ease with which it is fitted to data. Admittedly, the

function will not precisely represent a given data set, but it is sufficient

to model the more important overall trends. Appendix A shows that the basic

parabolic equation of X - 2PY provides a good representation of two-

dimensional data. The resulting expression for the lift coefficient is
shown below in terms of the mean effective angle a, the angle for maximum

lift coefficient a and the oscillatory angle - 6/V.m'

-[ m)2 ~ ((•_~ +(18 6) + C• (42)
m

Terms in the above equation which have not been previously defined may be

found in Appendix A.
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The nonlinear angle-of-attack behavior is of primary interest since it

is encountered prior to the oscillatory divergence associated with constant

negative C£ Equation (42) is seen to consist of constant terms and time-

dependent terms. Substitutions into Equation (41) would yield a differential

equation that describes a damped oscillatory motion of the wing section. The

constant portion of the forcing function contributes only to the steady-

state solution and is of no particular interest here. The time-dependent

portion of the forcing function is the aerodynamic damping contribution, and

it determines the system stability in forced vibrations. It is this portion

which determines the existence and sustainment of the stall flutter condition.

Substituting Equation (42) into Equation (41) and rearranging terms

give an equivalent damping coefficient of

2yw + !(2• 2(i)m (a - Om)((4)-(1(3

An irterpretation of the aerodynamic damping terms may be found by examining

their source in Equation (42). The term containing (a - am ) is the mean

aerodynamic damping and is linear with 6. Its magnitude and sign depends

on the value of the mean effective angle a relative to the angle for maximum

lift a . When the mean effective angle is on the back side of the lift
m

curve (a > am ), the mean aerodynamic damping contribution is negative, or

destabilizing. This term is the predominant of the two in establishing

system stability for small oscillations.
The other aerodynamic damping contribution is a function of 6 in

Equation (42), or 6 in Equation (43). This term reduces 'the section C for

both positive 6 and negative 6, thus contributing both positive and negative

aerodynamic damping respectively. As Lhe wing section plunges down during

its oscillations, this term contributes negative damping by reducing C£.

The reduced C£ effectively adds energy to the system, allowing the wing to

plunge further down than it would otherwise. This energy is conserved in
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the spring as a pontential energy of deflection and is then converted to

wing kinetic energy as the cycle progresses and the wing heaves up. However,

as the wing heaves upward (positive 6), the same damping term still reduces

the C., which now contributes a positive aerodynamic damping. The positive

damping now extracts from the system that energy which had previously been

added during the downward plunge. Thus, the net energy gain per cycle is

essentially zero even though the motion tends to be sustained. It is this

process which is believed to be responsible for the limit-cycle behavior

observed during stall flutter tests of the CCW model.

The first term discussed above has a greater relative magnitude than

the second for small amplitudes of motion. As such, it determines the

initial stability of the system. As amplitude increases, the second term

becomes predominant and tends to develop the limit-cycle response. For the

purpose of establishing stall flutter boundaries then, the 6 term will be

dropped and only the first term will be retained. This gives the following

equation as the stability criterion for the modified equivalent damping:

2nyw + i qc 2 180 (- > 0 (44)
n m2P V 7T m

This may be solved as an expression for the limit on the mean effective

angle-of-attack to avoid stall flutter:

_ m YWn(2P) m(a - am) • 0 •vc

where (a - a m) is in degrees. Since the quantity (2P) is always negative

and the other terms on the right-hand side are all positive, the equation

states that in order for stall flutter to occur, the mean effective angle 0

This explanation does not violate the First Law of Thermodynamics since
the energy source is provided by the free-stream velocity.
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* must be greater than the value of a This is especially interesting since
m

oscillatory motion could carry the maximum angle even further into stall,

or further beyond am"

* An alternate solution of Equation (44) gives the boundary on free-stream

velocity for the avoidance of stall flutter:

VyW (2P) m
VF -' c •- m (45)

PC (a -

The stall flutter velocity VSF is seen to decrease as the reciprocal of the

quantity (a - a m). As a becomes much greater than a m the section moves

further into stall and provides more negative aerodynamic damping, de-

creasing the stall flutter boundary. In general the level of free-stream

velocity for stall flutter must be great enough to amplify the negative

aerodynamic damping to the extent that it equals or exceeds the stirctural

damping of 6w . As structural damping 6w is increased, the stall flutterIIn

boundary also increases.
The values of a and (2P) in Equation (45) are quite dependent on the

m

magnitude of C . Therefore the calculation of VSF, which is for constant

C does not correspond to constant jet momentum conditions. This is not

restrictive, but it could lead to misinterpretation of the results. For

example, if C is initially evaluated for a reference jet momentum iv)° and

dynamic pressure qo then the jet momentum at the stall flutter velocity

mVi)sF would have to be
SF •j

SVj~sF q 0--o

for the same C . The use of Equation (45) will be shown later in comparing

theoretical stall flutter boundaries to the CCW model data.
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The unusual point of this stall flutter is the manner in which it is

approached with CC airfoils. The angle-of-attack at C z may decrease by as
m

much as 10 deg as jet momentum is increased. So although the system may be

stable at low blowing rates (low C and high a ), it may pass into stall
m

flutter and even divergent oscillations at high blowing rates (high C and

lower a ) while at the same a and flight speed. Even more interesting is
te m

the lift behavior in this transition. Generally the C• - C relationship

shows continued positive augmentation beyond the a stall. Thus greater magni-

tudes of lift may be developed by increasing C while -oing deeper into stall

flutter conditions, even neglecting the effects of dynamic stall overshoot

commonly developed by conventional airfoils. This is apparent from Equation

(42) which shows that the time average C., and hence lift, is primarily de-

pendent on the steady-state conditions of C and a and that 6 terms contrib-

ute only to the high frequency oscillatory forces of flutter.

This predictable and gradual behavior may prove to be very important

and useful in application. It has several implications. First, stall flut-

ter for a CC airfoil does not mean an attendant sudden loss of lift. Second,

increased blowing alone at flutter conditions will worsen the condition by

driving the a to still lower values. Third, recovery is obtainable by a
m

sharp decrease in angle-of-attack along with increased blowing rates. Fourth

and finally, this recovery process may actually increase lift, resulting in

no loss of altitude.

MODEL WING DATA AND COMPARATIVE ANALYSIS

The experimentally observed stall flutter appeared as a simple harmonic

motion involving only the wing bending mode. At an incidence angle of aTIP

- 0 deg and above, the flutter began to occur only as C w was increased

beyond a value of about 0.20. The frequency and character of motion was

examined by a strobe light aimed at the wing tip. This showed thaL the fre-

quency of oscillation was that of the first cantilevered natural bending

frequency of the wing. Strobing the tip at multiples of this frequency
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produced a multiple exposure during oscillation and showed that no torsional

deflection occurred. The wing chordwise position of center of gravity and

elastic axis are nearly coincident on the model so that such uncouplad

motion is possible. The amplitude of oscillation was observed to be about

0.5 to 1 in. peak to peak, which increased as C was increased. For a 1-

in. oscillation to occur at the wing first bending frequency (19.3 Hz), the

wing tip must have experienced an oscillating angle-of-attack of ± 2.9 deg.

The previous formulation for the two-dimensional case cannot be applied

directly to data for the three-dimensional model wing. Distributed elastic-

ity is one of the primary differences since it produces a distributed de-

flection for the wing. It is the corresponding distribution of aerodynamic

response which then creates the driving bending moments to cause the wing

stall flutter condition. However, an equivalence may be drawn between the

two systems such that the terms of Equation (41) for the two-dimensionaJ

case are scaled to represent the characteristics of the three-dimensional

wing. Appendix B shows ýhe details of this equivalence and the numerical

values corresponding to the CCW model. The numerical values are valid only

for the case of aTIP - 0 deg, corresponding to the incidence angle at which

stall flutter was observed on the CCW model. The scaling is sensitive to

wing incidence since it depends on establishing a position for the wing

center of oscillating lift.

The theoretical stall flutter velocity for the CCW model is evaluated

by substituting the numerical values of Appendix B into Equation (45) for

the two-dimensional wing. This equation is shown below in terms of the

aerodynamic operating conditions.

V SF -1.4124 2P

Since the above equation is inten.ed to represent the CCW model, the aero-

dynamic terms (2P), a, and a must be evaluated at the appropriate model
m
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wing opereting conditions. More specifically, these terms must be evaluated

from two-dimensional airfoil data by using local values of C and effective

angle-of-attack at the representative wing location. They can then be re-

lated to the corresponding wing values of C and a for comparison to the

model data.

Appendix B gives the center of oscillating lift for the model wing as

2.467 ft (0.752 m) from the wing root, or at 82.3 percent span. Theoretical

values of the wing local C and a for this station were obtained from the

rigid wing predictions at an incidence angle of aTIP " 0 deg. The wing root

is stalled for this incidence, even at zero jet momentum. As jet momentum

is increased, the stall region extends further outltoard, approaching the

wing tip. Figure 39 presents these values of C end a at the center of
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WING STATION 2.48 FT
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z0.24 0

LLu
&u

S0.16 -4 <
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0 0.04 0.08 0.12 0.16 0.20 0.24
WING JET MOMENTUM COEFFICIENT, CM.

Figure 39 - Theoretical Variation of Local Jet Momentum Coefficient
and Angle of Attack
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oscillating lJift as they vary with the wing C . Although these values arel•w

at the 82.3 percent span, they may be compared to the two-dimensional data

which are available for the wing tip airfoil. Figure 40 shows this cross-

plot and allows an evaluation of the operational proximity to the stall con-

dition. As previously discussed, the mean operational angle a must be

greater than the stall angle am for stall flutter to occur. This condition

is initially satisified at C = 0.12 in Figure 40, suggesting the possibility

of stall flutter for C, >_ 0.12.
The stall flutter velocity VSF may be evaluated from Equation (46) and

the information in Figure 40. The value of the term 2P is a measure of the

stall rate (i.e., sharp or gradual). This term was evaluated from the stall

region of the two-dimensional data for C values of 0.12, 0.16, and 0.20. A

single value gave good agreement with all three C curves. Figure 41 in-

dicates the resulting sensitivity of VSF to the angular difference (a - a m).

Plotted this way, the stall flutter boundary is examined independently of any

* particular value of a or a . The boundary is seen to drop rapidly as aS* m

* exceeds a by just 1 deg. This behavior should be expected with the very
m

low damping factor for the CCW model. Operational conditions for C values

of 0.12, 0.16, and 0.20 are superimposed on Figure 41 to give the specific

VSF value for each condition. The values of VSF may be related back to the

corresponding wing C values by the curve of Figure 39.
Pw

The theoretical stall flutter boundary for the CCW model is shown more

meaningfully in Figure 42 as it varies with the wing parameter Cw. Experi-
w

mentally observed stall flutter conditions from the CCW model data are also

shown for '-omparisun. In general the agreement is quite good between theory

and experiment. To put this in perspective, two important points should be

noted. First, the theoretical boundary is based on a single-degree-of-freedom

model, using two-dimensional airfoil characteristics and mass scaling, to rep-

resent the wing flutter. By contrast, the wing flutter condition actually

depends on the span distribution of structural elasticity, aerodynamic pro-

perties, induced angles, and wing mode shape. More specifically, the local
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angle-of-attack changes drastically with the wing span, and it is the span-

wise integration of this quantity which creates the negative aerodynamic

damping to produce flutter conditions. The simple theory, however, uses

representative terms at only a single point along the wing span to predict

the stall flutter boundary. The second point to be noted concerns the ex-

perimentally observed stall flutter conditions. The model wing was not

equipped with an "exciter" of any kind, and so the stall flutter condition

was solely dependent on wind tunnel turbulence to initialize the motion.

This is certainly sufficient for unstable conditions, but it does not allow

an accurate measurement of the neutrally stable flutter boundary. The ex-

perimentally observed stall flutter conditions shown in Figure 42 were in a

state of steady oscillatory motion and their amplitudes were most certainly

beyond the neutrally stable stall flutter boundary. Accordingly, the ex-

perimental boundary must lie to the left of the data points marked as being

in stall flutter, or at lower C for a given velocity. This suggests even
wbetter agreement between theory and experimental data than shown in Figure

42.

To summarize, the necessary condition for stall flutter is that the

effective angle-of-attack must be greater than che stall angle at the appro-

prLate Cp. If this condition is satisfied, then the stall flutter velocity

depends on the relative magnitudes of structural and aerodyaamic damping,

as given in Equation (45). An equivalence may be established between the

three-dimensional wing stall flutter and the single-degree-of-freedom two-

dimensional stall flutter boundaries. This equivalence is based on a linear

appro.imation of the wing mode shape, and use of a representative wing

station at the center of oscillating lift suggests that only a portion of

the wing need be operating in stall conditions for stall flutter to occur.

Theoretical calculations of a stall flutter boundary for the CCW model ob-

tained by using the above equivalence are in good agreement with the ob-

served stall flutter condition from CCW model data.
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Ilu
CONCLUSIONS

The static aeroelastic characteristics of a wing with CC airfoils has

been examined both by a two-dimensional approach and by a three-dimensional

wing approach that utilizes a modification of lifting line theory. The

theory has shown good correlation with experimental data from a CCW model,

verifying the ability to predict rigid wing performance and the boundaries

of torsional divergence and CC reversal. The parameters of lift effective-

ness and control effectiveness provide a quantitative assessment of the

elastic wing behavior at dynamic pressures below the boundaries, and may

serve to establish acceptable limits of operation.

The simple two-dimensional analysis has shown that divergence stiffness

Sis strongly affected by EA placement. More forward EA locations, approach-

ing the quarter-chord, are preferable to improve the boundary of torsional

divergence. However this results in larger pitching moment magnitudes about

the EA for the rigid wing. The reversal stiffness was shown to depend

primarily on the airfoil lift and moment coefficient derivatives with

respect to C and a. A value of 4r is suggested as a minimum design stiff-

ness, corresponding to about ± 10-percent deviation from the rigid wing

behavior. This stiffness level should provide satisfactory avoidance of

torsional divergence as well.

The three-dimensional wing analysis was derived for the general case

of distributed elasticity and then modified to allow only wing root elastic-

ity for comparison to the CCW model data. This comparison demonstrated the

ability of the theory to predict specific variations of L.E. and C.E. for

the elastic wing as a function of C and incidence angle. The correlation

maintained agreement even as CC reversal conditions were encountered.

The wing root elasticity analysis may also be applied to certain trim

and stability problems of the aircra~ft as a whole. The advantage of this

application is that specific lift and moment variations can be included

along with angle-of-attack in the trim attitude solution. Wing lift may be

obtained from many combinations of a and C ; each has different net pitching
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moments and so the trim attitude for a specified lift is not unique. It is

to be expected that the relative stability will also change with the t C
1'w

combination at trim.

Stall flutter conditions encountered with the CCW model may be pre-

dicted by a two-dimensional analysis when proper scaling and aerodynamic

equivalence are used. This stall flutter condition involves only the wing

bending mode and falls in a class of relatively few single-degree-of-freedom

flutter problems. The stall flutter condition may occur at a number of a

and C P combinations since each C level has a different associated stall
angle. Wing lift tends to be maintained at stall flutter due to the gradual

"stall characteristic of CC airfoils. Once stall flutter has occurred, an

increase in C will aggravate the condition by effectively lowering the

stall angle. Recovery is obtained by a sharp decrease in angle-of-attack

along with an increase in C . Properly executed, this process should elimi-

nate the condition with no loss in lift or altitude..

It is recommended that further analysis be performed to evaluate the

classical flutter problem for CC airfoils. Since the trailing edge stagna-

tion point Is variable on this type of airfoil, conventional unsteady aero-

dynamics do not apply. This requires that wind tunnel data be obtained for

CC airfoils during both oscillating ot and oscillating C zconditions to

establish dynamic characteristics for lift and pitching moment.
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APPENDIX A

REPRESENTATION OF THE LIFT COEFFICIENT NEAR STALL

The general behavior of CC airfoils near the angle of attack stall con-

dition is gradual and almost symmetri-. Therefore, a simple parabolic fit

is sufficient to describie first order behavior. The curve shown in Figure

A.1 at a constant blowing rate may be represented about the stall condition

5
4

d3..

u"; PARABOLIC CURVES

L DATA: 5IPERC:T ELLIPSE

o .I I , I _ _ _ __,_ __I

ANGLE OF ATTACK --- , DEG

Figure A.l - Parabolic Representation of Lift Coefficient
in the Stall Region
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by the foll.owing parablolic equation:

2

(- m , 2P (C)9-Cit (A.1)
m

2
where 2P (al-a )2/(C• - C• ). The point (C,, a is taken at the

m m
maximum C condition and the point (CW , 0) is chosen to yield the most

reasonable curve fit. Solving the above for Ck yields the more convenient

form

X ( - m) k C (A.2)

Figure A.1 shows that this gives a good approximation of the C vari-

ardnn over about a 12-deg range of angle of attack. Two parabolic curves

are shown for C, = 0.12 to indicate the quality of curve fit which may be

obtained. The quality may be improved over a narrow angle-of-attack range

(a- m 1 < 3 deg) by sacrificing the agreement over the broad angle-of-

attack range.

In representing the oscillating airfoil, the angle of attack is sepa-

rated into a mean value a and a time-varying term due to heave. For small

angles this may be described as

cx-- (X • 6/V (A. 3)

where the angles are expressed in degrees. Substituting Equation (A.3) into

Equation (A.2) and expanding gives the following equation for the lift

coefficient in terms of the mean angle and the heave velocity:

C 1 Ot2 _/( 180\6 _0_ +21(.4C- = •(A - cm) - 2(& - cm) - + (+ Cj m (A.4)
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The quantity (a - cm) signifies the relative proximity of the mean angle of

attack & to the angle of attack for maximum lift coefficient C., . The sign
m

of this quantity is seen to determine the sign of the first order aero-

dynamic damping term.
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APPENDIX B

EQUIVALENCE BETWEEN THE TWO-DIMENSIONAL STALL FLUTTER
EQUATION AND A THREE-DIMENSIONAL WING

The distributed structural properties of a three-dimensional wing yield

a frequency and mode shape for the first natural bending mode. This fre-

quency for the CCW model was measured as 19.3 Hz, or 121 radians/second. The

calculated mode shape for the CCW model is shown in Figure B.l. In general

1.0

0 0.8 EQUIVALENT11 RIGID WING

'" MODE SHAPE
"u 0.6

Uj ELASTIC MeiG
N 0.4 •MODE SHAPE

"j OFFSET< 1
2 HINGG
0 0.2

0 0.2 0.4 0.6 0.8 1.0

DIMENSIONLESS SPAN, y/k

Figure B.1 - Bending Mode Shape and Equivalent Representation of CCW Model

the wing mode shape and frequency may be adequately represented by the rigid

body response of an outboard portion of the wing acting about an offset

hinge with spring restraint. This equivalent system is also shown in Figure

B.1 for the CCW model. The hinge position was chosen to represent the

wing mode shape. The equation of motion of this single degree-of-freedom

system is

0 + 2yn0 + W 2 1"" Mh(t) (B.1)
h
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Here Ih is the wing moment of inertia about the hinge, Mh (t) is the time-

dependent aerodynamic bending moment about the hinge, and w is the natural

frequency (which is set equal to that of the actual wing). The above equa-

tion has only a single degree of freedom and its form is similar to the

equation which describes two-dimenpional stall flutter.

The deflection angle variable 6 of Equation (B.1) may be replaced by

the linear displacement 6 at a distance r from the hinge. The substitution

of 6 ; e and its derivatives into Equation (B.1) gives the following equa-

tion in terms of the linear displacement at a point y - h + r from the wing

root:

+ 2yw +W 26 _ r Mh(t) (B.2)
n n h

The equation for two-dimensional stall flutter was previously given as

"6+2yw6+W 6 - L(t) (B.3)
n n m

and it is the equivalence between this equation and Equation (B.2) for the

wing which is to be established. These two equations already have the same

form. Obviously the frequency w and damping factor y used in Equationn

(B.3) should be numerically equal to those of Equation (B.2) for the wing.

Furthermore the forcing functions of the two equations should be aero-

dynamically equivalent and of equal magnitude.

The forcing functions of Equations (B.2) and (B.3) each consist of

steady-state and time-varying components. The latter contribute to the

system stability and are the components of interest here. Consequently it

is the time-varying portions of the two forcing functions which must b:

equivalent. The induced angle distribution of the wing may be assumed

constant in time for quasi-steady-state conditions. Geometric angles are

also fixed since no torsional deflections are allowed. This leaves only tne
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angle of attack change due to 6 motion as contributing to the time-varying

forcing function. The wing lift and hinge moment may be expressed as

(X-h)

L f d
h o

(X-h)

M ( ho rdZ

Here dZ - a Aczqcdr, Ac f -rS/V, and r is measured from the hinge. It is

more convenient to express the hinge moment in terms of the integrated lift

and an offset for the center of oscillating lift as

Mh -r L (B.4)
a wh

where ra Mh/L is the spanwise center of lift offset from the hinge. The
h

value of r may be evaluated directly from the above equation asa

acr 2dr
ra (h-b) (B.5)

J( acrdr

and is seen to be independent of time. It should be noted that because of

similarity of terms in the numerator and denominator, it is necessary to

prescribe only the basic distributions of a and c in order to evaluate r .

Equation (B.5) may be evaluated from the rigid wing distribution of a,

if this is available, and from the known chord distribution. The distribu-

tion of a depends on the wing operating conditions of C and angle-of-attack.

The conditions of interest are those near the wing stall where the analysis

is subject to multistable solutions and cannot provide accurate distribu-

tions of the local angle of attack or of the lift curve slope. However,

the value of r may be approximated by assumed dictributions of the a term.

a
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Uniform distributions of a and c place ra at two-thirds of the hinged wing

length. A triangular distribution of a(a - a. r) and a constant chord place

r a at three-fourths of the hinged wing length. Note that these ra offsets

are measured from the hinge location and must be added to the hinge position

h to obtain center of oscillating lift position relative to the wing root.

Geometric twist in the CCW model produces a nearly trapezoidal angle

of attack distribution. At a TIP - 0 deg and high magnitudes of C, this

gives a basically triangular distribution of the a term over the hinged wing

length. This basic distribution of the a term and a constant chord place r a

at three-fourths of the hinged wing length for the CCW model.

Aerodynamic equivalence between the time-varying portion of the forcing

functions of Equations (B.2) and (B.3) can now be established by using ra

in Equation (B.2) in place of the arbitrary span location r. The equation

then describes the motion of the center of oscillating lift. Substitution

of Equation (B.4) gives the wing forcing function in terms of the oscillating

(time-varying) wing lift as

2
r L

ah (B.6)

The two-dimensional lift per unit span is assumed to be equal to the average

wing lift per unit span as

L(t) - L /(-h) (B.7)

A solution for the equivalent mass per unit span of the two-dimensional

wing is obtained by using the above relation and equating the wing and two-

dimensional forcing functions. This equivalent mass per unit span provides

the proper magnitude scaling of the two-dimensional aerodynamic forcing

function in relation to that of the wing. It is given by
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m 2 (B8)
m r a 2(2t-h)

The equivalence between Equation (B.2) for the wing and Equation (B.3)

for the two-dimensional stall flutter is now complete. It requires that

the two equations have the same natural frequency w and the same damping
n

factor y and also that the time-varying portion of the aerodynamic forcing

functions be scaled. The scaling is based on finding the center of oscil-

lating lift for the wing, Equation (B.5), which is taken as the representa-

tive point for the equivalent two-dimensional lift. The magnitude of the

two-dimensional forcing function is made equal to that of the wing forcing

function by scaling the two-dimensional mass per unit span as shown in

Equation (B.8).

The above parameters are tabulated below as calculated for the geometry

of the CCW model. The center of oscillating lift was calculated from the

triangular distribution of the lift curve slope. The damping factor was

evaluated from an oscillograph recording of the blade bending moment varia-

tion during free vibrations.
First natural frequency in bending wn 121 rad/sec

Damping factor y 0.00899

Hinge offset h 0.8667 ft

Wing moment of inertia about hinge Ih 0.1295 slug/ft

Center of oscillating lift r (from hinge) 1.600 ft
a

Center of oscillating lift ra + h (from root) 2.467 ft

Equivalent mass m per unit length 0.02371 slug/ft
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